School of Population Health, Curtin University, Perth, Western Australia. $A = \{x_i, y_i\}$ **Spatial kernel smoothing with extreme outliers**

September 2-5, 2024

Spatial kernel smoothing with extreme outliers

Mohomed Abraj

Murujuga Rock Art Monitoring Program (MRAMP).

Dr Mohomed Abraj Murujuga Rock Art Monitoring Program (MRAMP) School of Population Health, Curtin University, Perth, WA.

Australasian Applied Statistics [Con](#page-0-0)[fe](#page-1-0)[ren](#page-0-0)[c](#page-1-0)[e 2](#page-0-0)[0](#page-25-0)[24](#page-0-0)

Mohomed Abrai (abraj.mohomedh@curtin.edu.au)

MRAMP study area

 299

É

pH data measured on Murujuga rocks

Sample size = 330

Woodside general meeting

Woodside execs grilled over Burrup Hub impacts on Murujuga rock art

Friends of Australian Rock Art 4 subscribers

Mohomed Abraj (abraj.mohomedh@curtin.edu.au) 4 / 15

First year MRAMP report - spatial smoothing of pH

Mohomed Abraj (abraj.mohomedh@curtin.edu.au) 5 / 15

 299

Data with extreme outliers - pXRF data

The **elemental composition** of rocks is evaluated with a portable X-ray fluorescence analyser (pXRF)

- The **ratio** two elements is **more consistent** than the absolute pXRF measurement.
- Geologists often use **ratios** of two elements to characterise rock types.
- The **ratio of silica and titanium** (from pXRF data) was calculated, however, these ratios had a highly skewed distribution with **outliers**.
- The **Nadaraya-Watson (N-W) kernel smoother**, a non-parametric method, is computationally efficient method. However, N-W method is **not robust** with **extreme outliers**.
- Extreme outliers in the data can **distort** the smoothed surface and **mislead** the interpretation.

 QQQ

イロメ イ部メ イヨメ イヨメー

- The **ratio** two elements is **more consistent** than the absolute pXRF measurement.
- Geologists often use **ratios** of two elements to characterise rock types.
- The **ratio of silica and titanium** (from pXRF data) was calculated, however, these ratios had a highly skewed distribution with **outliers**.
- The **Nadaraya-Watson (N-W) kernel smoother**, a non-parametric method, is computationally efficient method. However, N-W method is **not robust** with **extreme outliers**.
- Extreme outliers in the data can **distort** the smoothed surface and **mislead** the interpretation.

 QQQ

K ロ > K dj > K 글 > K 글 > H 글

- The **ratio** two elements is **more consistent** than the absolute pXRF measurement.
- Geologists often use **ratios** of two elements to characterise rock types.
- The **ratio of silica and titanium** (from pXRF data) was calculated, however, these ratios had a highly skewed distribution with **outliers**.
- The **Nadaraya-Watson (N-W) kernel smoother**, a non-parametric method, is computationally efficient method. However, N-W method is **not robust** with **extreme outliers**.
- Extreme outliers in the data can **distort** the smoothed surface and **mislead** the interpretation.

 QQ

イロト イ団 トイ ヨト イヨト 一番

- The **ratio** two elements is **more consistent** than the absolute pXRF measurement.
- Geologists often use **ratios** of two elements to characterise rock types.
- The **ratio of silica and titanium** (from pXRF data) was calculated, however, these ratios had a highly skewed distribution with **outliers**.
- The **Nadaraya-Watson (N-W) kernel smoother**, a non-parametric method, is computationally efficient method. However, N-W method is **not robust** with **extreme outliers**.
- Extreme outliers in the data can **distort** the smoothed surface and **mislead** the interpretation.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q @

- The **ratio** two elements is **more consistent** than the absolute pXRF measurement.
- Geologists often use **ratios** of two elements to characterise rock types.
- The **ratio of silica and titanium** (from pXRF data) was calculated, however, these ratios had a highly skewed distribution with **outliers**.
- The **Nadaraya-Watson (N-W) kernel smoother**, a non-parametric method, is computationally efficient method. However, N-W method is **not robust** with **extreme outliers**.
- Extreme outliers in the data can **distort** the smoothed surface and **mislead** the interpretation.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Nadaraya-Watson kernel smoothing

Let the data consist of the observed values y_1, \ldots, y_n of some quantity y, observed at the sites x_1, \ldots, x_n respectively.

$$
y_i = Y(x_i) + \epsilon_i \tag{1}
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

where $Y(x), x \in R^2$ is a smooth function that is the target of investigation.

Then, the Nadaraya-Watson smoother is defined as

$$
\widehat{Y}(x) = \frac{\sum_{i} y_i \kappa(x - x_i)}{\sum_{i} \kappa(x - x_i)}, \qquad x \in W \tag{2}
$$

where $\kappa(x)$ is the smoothing kernel, a probability density on the two-dimensional plane.

R package **'spatstat'** by Adrian Baddeley

 Ω

Nadaraya-Watson kernel smoothing

Let the data consist of the observed values y_1, \ldots, y_n of some quantity y, observed at the sites x_1, \ldots, x_n respectively.

$$
y_i = Y(x_i) + \epsilon_i \tag{1}
$$

where $Y(x), x \in R^2$ is a smooth function that is the target of investigation.

Then, the Nadaraya-Watson smoother is defined as

$$
\widehat{Y}(x) = \frac{\sum_{i} y_i \kappa(x - x_i)}{\sum_{i} \kappa(x - x_i)}, \qquad x \in W \tag{2}
$$

where $\kappa(x)$ is the smoothing kernel, a probability density on the two-dimensional plane.

R package **'spatstat'** by Adrian Baddeley

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

Winsorization (C P. Winsor1)

Winsorization is a procedure in which the extremely high values of the data are replaced by **less extreme values**. Also, winsorized values are **more robust to outliers**.

For example data (N=20):

92, 19, 101, 58, 1053, 91, 26, 78, 10, 13, –40, 101, 86, 85, 15, 89, 89, 28, 5, 41

Data below the 5th percentile are –40 and 5. Data above the 95th percentile are 101 and 1053.

A winsorized data would be:

92, 19, 101, 58, 101, 91, 26, 78, 10, 13, 5, 101, 86, 85, 15, 89, 89, 28, 5, 41

(–40 was replaced with 5 and 1053 was replaced with 101).

¹N. J. Cox, WINSOR: Stata module to Winsorize a variable, Statistical Software Gomponents, Boston College Department of Economics, [No](#page-12-0)[v. 1](#page-14-0)[9](#page-13-0)9[8](#page-15-0)[.](#page-16-0) 4 EX 4 EX 2 2990 **Mohomed Abraj** (abraj.mohomedh@curtin.edu.au) 9 / 15

Winsorization (C P. Winsor1)

Winsorization is a procedure in which the extremely high values of the data are replaced by **less extreme values**. Also, winsorized values are **more robust to outliers**.

For example data (N=20):

92, 19, 101, 58, 1053, 91, 26, 78, 10, 13, –40, 101, 86, 85, 15, 89, 89, 28, 5, 41

Data below the 5th percentile are –40 and 5. Data above the 95th percentile are 101 and 1053.

A winsorized data would be:

92, 19, 101, 58, 101, 91, 26, 78, 10, 13, 5, 101, 86, 85, 15, 89, 89, 28, 5, 41

(–40 was replaced with 5 and 1053 was replaced with 101).

¹N. J. Cox, WINSOR: Stata module to Winsorize a variable, Statistical Software Gomponents, Boston College Department of Economics, [No](#page-13-0)[v. 1](#page-15-0)[9](#page-13-0)9[8](#page-15-0)[.](#page-16-0) 4 EX 4 EX 2 ORO **Mohomed Abraj** (abraj.mohomedh@curtin.edu.au) 9 / 15

Winsorization (C P. Winsor1)

Winsorization is a procedure in which the extremely high values of the data are replaced by **less extreme values**. Also, winsorized values are **more robust to outliers**.

For example data (N=20):

92, 19, 101, 58, 1053, 91, 26, 78, 10, 13, –40, 101, 86, 85, 15, 89, 89, 28, 5, 41

Data below the 5th percentile are –40 and 5. Data above the 95th percentile are 101 and 1053.

A winsorized data would be:

92, 19, 101, 58, 101, 91, 26, 78, 10, 13, 5, 101, 86, 85, 15, 89, 89, 28, 5, 41

(–40 was replaced with 5 and 1053 was replaced with 101).

¹N. J. Cox, WINSOR: Stata module to Winsorize a variable, Statistical Software Gomponents, Boston College Department of Economics, [No](#page-14-0)[v. 1](#page-16-0)[9](#page-13-0)9[8](#page-15-0)[.](#page-16-0) 4 EX 4 EX 2 2990 **Mohomed Abraj** (abraj.mohomedh@curtin.edu.au) 9 / 15

For values y_i , another winsorization procedure is as follows.

- **1** Calculate the inter-quartile range $IQR = Q_3 Q_1$ of y_i .
- **2** Calculate upper and lower thresholds

 $U = Q_3 + c$ IQR, $L = Q_1 - c$ IQR

where $c \ge 0$ is a chosen coefficient. A typical value is $c = 1.5$.

³ Calculate the extreme values within [L*,*U],

$$
y_U = \max\{y_i : L \le y_i \le U\}
$$

$$
y_L = \min\{y_i : L \le y_i \le U\}
$$

$$
y_i^* = \begin{cases} y_L & \text{if } y_i < L \\ y_i & \text{if } L \le y_i \le U \\ y_U & \text{if } y_i > U \end{cases}
$$

For values y_i , another winsorization procedure is as follows.

 \bullet Calculate the inter-quartile range $lQR=Q_3-Q_1$ of $y_i.$

- **2** Calculate upper and lower thresholds $U = Q_3 + c$ IQR, $L = Q_1 - c$ IQR where $c \ge 0$ is a chosen coefficient. A typical value is $c = 1.5$. ³ Calculate the extreme values within [L*,*U], $y_U = \max\{y_i : L \le y_i \le U\}$ $y_L = \min\{y_i : L \le y_i \le U\}$
- **Replace extreme values outside** $[L, U]$ with the nearest extreme inside $[L, U]$:

$$
y_i^* = \begin{cases} y_L & \text{if } y_i < L \\ y_i & \text{if } L \le y_i \le U \\ y_U & \text{if } y_i > U \end{cases}
$$

For values y_i , another winsorization procedure is as follows.

- \bullet Calculate the inter-quartile range $lQR=Q_3-Q_1$ of $y_i.$
- **2** Calculate upper and lower thresholds

 $U = Q_3 + c$ IQR, $L = Q_1 - c$ IQR

where $c \ge 0$ is a chosen coefficient. A typical value is $c = 1.5$.

³ Calculate the extreme values within [L*,*U],

$$
y_U = \max\{y_i : L \le y_i \le U\}
$$

$$
y_L = \min\{y_i : L \le y_i \le U\}
$$

$$
y_i^* = \begin{cases} y_L & \text{if } y_i < L \\ y_i & \text{if } L \le y_i \le U \\ y_U & \text{if } y_i > U \end{cases}
$$

For values y_i , another winsorization procedure is as follows.

- \bullet Calculate the inter-quartile range $lQR=Q_3-Q_1$ of $y_i.$
- **2** Calculate upper and lower thresholds

 $U = Q_3 + c$ IQR, $L = Q_1 - c$ IQR

where $c \ge 0$ is a chosen coefficient. A typical value is $c = 1.5$.

³ Calculate the extreme values within [L*,*U],

$$
y_U = \max\{y_i : L \le y_i \le U\}
$$

$$
y_L = \min\{y_i : L \le y_i \le U\}
$$

y ∗ ⁱ = y^L if yⁱ *<* L yi if L ≤ yⁱ ≤ U y^U if yⁱ *>* U

For values y_i , another winsorization procedure is as follows.

- \bullet Calculate the inter-quartile range $lQR=Q_3-Q_1$ of $y_i.$
- 2 Calculate upper and lower thresholds

 $U = Q_3 + c$ IQR, $L = Q_1 - c$ IQR

where $c \ge 0$ is a chosen coefficient. A typical value is $c = 1.5$.

³ Calculate the extreme values within [L*,*U],

$$
y_U = \max\{y_i : L \le y_i \le U\}
$$

$$
y_L = \min\{y_i : L \le y_i \le U\}
$$

$$
y_i^* = \begin{cases} y_L & \text{if } y_i < L \\ y_i & \text{if } L \le y_i \le U \\ y_U & \text{if } y_i > U \end{cases}
$$

Ratio of SiO² and Ti in Granophyre

Raw data Winsorized data

 $A \Box B$ A

Spatial smoothing for ratio of SiO² and Ti

Raw data **Raw data** (log scale)

4日下

AD > 4 B > 4 B >

 290

Spatial smoothing of winsorized ratio

Winsorized ratio of SiO² and Ti

 298

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Cross validation. Minimum error measurements are in [bold] 2 .

Thus, winsorization is an **efficient method** to reduce the effect of **spurious outliers** in N-W spatial kernel smoothing.

 2 MAE (mean absolute error), RMSE (root mean squa[re](#page-23-0) e[rro](#page-25-0)[r](#page-23-0)[\)](#page-24-0) \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \circ

Mohomed Abraj (abraj.mohomedh@curtin.edu.au) 14 / 15

I would like to express my gratitude to all those who have supported and contributed to this research. I particularly grateful to Professor Benjamin Mullins, Distinguished Professor Adrian Baddeley and Distinguished Professor Noel Cressie for their invaluable guidance. I also thank Dr Rebecca O'Leary, Dr Stephanie Hogg, Dr Suman Rakshit for their invaluable advice. This work was supported by MAC (Murujuga Aboriginal Corporation), and DWER (Department of Water and Environmental Regulation). I also thank Dr Tommaso Tacchetto, Professor Katy Evans, Glen Aubrey, Kasziem Bin-Sali, and Professor Pete Kinny, for their collaboration and assistance.

 Ω

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶ │ 경