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Motivation




Motivation

Spatial misalignment problem between PMs 5 concentration

(response) and meteorological variables (covariates) such as

temperature and precipitation.
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Figure: Map of China with geographic locations of pollution

monitoring stations and meteorological stations.



Motivation (Cont’d)

Existing methods to construct spatially aligned datasets:

© Nearest-neighbor interpolation (Jhun et al., 2015;
Greenstone et al., 2022);

© Kriging for each meteorological covariate separately and
treating predicted covariates as fixed (Reich et al., 2011;
Liu et al., 2020);

© Krige-and-regress (KINR) method that accounts for
additional variability of the predicted covariate (Madsen
et al., 2008; Szpiro et al., 2011; Pouliot, 2023)

However, KNR method only allows for

© A single misaligned meteorological covariate;

© Simple linear pollution-meteorological relationship.
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Model Set-Up

Denote the pollution stations and meteorological stations as

S ={s1,---,sn} and S = {51, ,8m}, respectively.

Let y = (y1,- - ,Z/N)T = (y(s1),--- 7y(3N))Tv

xp = (T1k, - ank) | = (zr(s1),- - 2r(sy)) | and
& = (Tig, - k)| = (2r(81), - 2k(8a)) T
K
yZ:BO"i'ka(l'zk)T/Bkz"i‘pz“‘fz, fOI'Z:L,N, (1)
k=1
where only y and x1,--- ,Zx are observed but not

Ty, ,TK.



Model Set-Up (Cont’d)

Let x = (&, 2], ,5:;(, :c};)—r denote the stacked

K (M + N)-vector of K covariates at locations in both S and S.
Assume

e~ Np®lyin,X),

¥ = Bdiag(L1, -+ , Lx)(R® Ipyn)Bdiag(Ly, -+, L)',
where = (u1,--- ,px) ', Ris a K x K cross-correlation
matrix for the K meteorological covariates, Ly is the lower
Cholesky factor of 3 which is the Matern spatial covariance

matrix for the k-th covariate.



Cokrig-and-Regress (CNR)




CNR Step 1

Estimate the parameters of the joint distribution of the

meteorological covariates, based on the observed misaligned
meteorological data xg = (&{, -, &))" .
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Figure: Estimated marginal Matérn covariance models (left),
estimated cross-correlation matrix (right) from CNR Step 1.
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CNR Step 2

Predict the unobserved s = (z{,--- ,z)) by cokriging,

based on the observed xg and estimated parameters for the
joint distribution of the meteorological covariates from CNR

Step 1.
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Figure: Spatial maps for the cokriging predictor of each
meteorological covariate in CNR, Step 2.
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CNR Step 3

Replace the unobserved meteorological covariates with their

cokriging prediction and fit the spatial linear mixed model
. K .

(1) ie., yi = Bo + Xp—y Fu(@ir) " Br + pi + €.
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Figure: Estimated conditional smoothers for the seven meteorological
covariates based on CNR and 5-NMR using natural cubic splines.
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Uncertainty Quantification




Bias-Correction and Uncertainty Quantification

To estimate variance of the CNR estimates or construct
confidence intervals for G:

(i) Perform preliminary parametric bootstrap to
bias-correct CNR spatial covariance parameter estimates
(which was shown to be biased).

(ii) Based on the bias-corrected CNR spatial covariance
parameter estimates, perform secondary parametric
bootstrap to obtain bootstrap samples of CNR, estimates

for ,Bk
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Bootstrap CI compared to Naive Variance Estimator
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Figure: Estimated conditional smoothers for the seven meteorological
covariates based on CNR (grey solid lines) and 5-NMR (red solid
lines) using natural cubic splines. Also shown are 95% confidence
bands based on the naive variance estimator for CNR (shaded regions
between dashed lines in grey),

and the
naive variance estimator for 5-NMR (shaded regions between dashed

lines in red). .



Simulation Studies



Simulation Settings

® S and S are locations of M = 243 meteorological stations
and N = 796 pollution monitoring stations, respectively.

© K =5 covariates with fi(z) " By = 2B for k=1,--- 5,
and 8 = (2,1,0.5,1,0.5,1)T.

© A total of 400 simulated datasets.
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Simulation Settings

© Bias and RMSE for (y:
o CNR;
o b-nearest-matching-and-regress (5-NMR).

© Ratio of average estimated standard error to empirical
standard deviation (ASE/ESD), empirical coverage
probability of 95% ClIs for [:
o Naive variance estimator (Naive) by ignoring the cokriging
prediction uncertainty;
o Proposed bootstrap approach.
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Simulation Results

Table: Bias, RMSE, ASE/ESD and empirical coverage of S for

_ =
k=1, 5.
Point Estimation

Method Bi=1 p2=05 B3=1 p4=05 fs=1

Bias CNR —0.0068 0.0021 —0.0070 0.0046 —0.0111

" 5NMR —0.1529  —0.0752  —0.1591 —0.0665 —0.1580

RMSE CNR 0.1733 0.1670 0.2068 0.2137 0.1948

: 5-NMR 0.2516 0.2113 0.2705 0.2535 0.2872

ASE/ESD

Method Inference Method Br=1 pB=05 Bs=1 p4=0.5 Bs=1

CNR Naive 0.7495 0.7749 0.7236 0.7811 0.7750

) Bootstrap 1.0896 1.0789 1.0300 1.0628 1.0928

5-NMR  Naive 0.8096 0.8159 0.8571 0.8541 0.7827

Empirical Coverage
Method Inference Method Bi=1 [y=05 B3=1 B4=05 B5 =1

ONR Naive 0.8400 0.8650 0.8275 0.8875 0.8750
’ Bootstrap 0.9525  0.9625 0.9600  0.9600 0.9550
5-NMR  Naive 0.7950 0.8500 0.8175 0.8750 0.8125
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R codes available at https://github.com/Zy1225/CNR.

e
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https://github.com/Zy1225/CNR
https://github.com/Zy1225/CNR

THANKS!
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