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Introduction

Introduction

Ordinal variable

* A type of categorical variable with fixed set of categories.

* has an ordered scale of categories (i.e. Likert scale responses to a survey
question).

Three common used ordinal models:

* Proportional odds model (McCullagh, 1980).

* Ordered stereotype model (Anderson, 1984).

* Adjacent-categories logit model (Simon, 1974).

Model-based clustering

* An approach describes the clustering process via statistical densities.

* A method based on finite-mixture densities.
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Introduction

Introduction

Semi-supervised clustering for ordinal data:

* Unsupervised clustering method sometimes can not resulted in consistency
between labeled and unlabeled data.

* Semi-supervised clustering can incorporate the information of known
knowledge of labeled data to cluster the unlabeled data.

* Majority of semi-supervised clustering for analyzing the ordinal data is not
appropriate (treating as continuous or nominal without considering the
order).

* There is no likelihood-based semi-supervised clustering approach proposed
for ordinal data.
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Model Proportional odds model

Proportional odds model

* Consider an n × p data matrix, with entry yij .

* Each entry has fixed q response categories.

* Let the probabilities for the response categories for yij be θij1, θij2, . . . , θijq
such that

∑q
k=1 θijk = 1, ∀i , j .

θijk =



exp(µk − αi − βj − γrj )

1 + exp(µk − αi − βj − γrj )
k = 1

exp(µk − αi − βj − γrj )

1 + exp(µk − αi − βj − γrj )
−

exp(µk−1 − αi − βj − γrj )

1 + exp(µk−1 − αi − βj − γrj )
1 < k < q

1−
∑q−1

k=1 θijk k = q.
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Model Proportional odds model

Proportional odds model

Or we can express it using logistic form of the linear predictors:

logit [P(Yij ≤ k)] =

 µk − αi − βj − γrj 1 ≤ k < q

+∞ k = q.
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Model Proportional odds model

Proportional odds model with clustering

Proportional odds model with clustering

* Assume the rows with unlabeled cluster memberships come from finite
mixture with R components.

* The previous logistic form of the linear predictors becomes:

logit [P(Yij ≤ k)] =

 µk − αr − βj − γrj 1 ≤ k < q

+∞ k = q,

* The constraints are:

* µ1 < µ2 < · · · < µq = +∞.

*
∑R

r=1 αr =
∑p

j=1 βj = 0.

* {γij} :
∑p

j=1 γij = 0 ∀i and
∑n

i=1 γij = 0 ∀j .
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Model Data likelihood

Data likelihood

L [Ω,π|Y ]

=

 nℓ∏
i=1

R∏
r=1

p∏
j=1

q∏
k=1

θ
I (yij=k)I (ri=r)
ri jk

 nℓ+nu∏
i=nℓ+1

R∑
r=1

πr

p∏
j=1

q∏
k=1

θ
I (yij=k)
rjk

 .

where:

* nℓ and nu represent the number of cases with labeled and unlabeled cases
respectively.

* I (yij = k) is an indicator variable that is 1 if yij is in category k, and 0
otherwise;

* I (ri = r) is an indicator variable that is 1 if row i with known cluster
membership ri belongs to row cluster r , and 0 otherwise.

* θrjk is the probability of each entry yij has response in category k at row
cluster r and column j .
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Model EM algorithm

Expectation Maximization Algorithm

* The EM algorithm is mostly applicable in calculating maximum likelihood
estimates through providing an iterative procedure on incomplete data
problems (McLachlan & Krishnan, 2015).

* E-step: is responsible for updating the latent variable zir , which is the
posterior probability of cluster membership, to estimate missing cluster
membership.

* M-step: updates the maximum likelihood estimates for parameters
µk ,αr ,βj ,γrj , and πr using the estimates zir obtained from the E-step.

A new cycle starts when the parameters from the M-step are used in the E-step.
This process repeats until estimates have converged.
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Simulation study

Simulation study

Data set structure

* Fixed p = 5 columns and q = 3 ordinal response categories. Three possible choices
of rows n = (300, 1000, 3000) and rows are equally distributed among the R = 3
clustering groups.

* The true values of model’s parameters are:

- {α1, α2, α3} = {−2, 0, 2};
- {β1, β2, β3, β4, β5} = {−2,−1.5, 0.3, 1.0, 2.2};
- {µ1, µ2} = {−0.693, 1.307}.

Scenarios

* fixed the percentage of cluster memberships that are known, denoted as
m% = 10%.

* varied by the distribution of memberships within that labeled portion, denoted as
{gr}.

For each combination of scenario and n, we simulated 100 replicate datasets.
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Simulation study

Simulation study: scenarios 1 ∼ 3

Table 1: Scenarios where all rows are equally distributed among the R = 3
clusters for semi-supervised row clustering approach.

Scenario1
m%= 10%

Scenario2
m%= 10%

Scenario3
m%= 10%

π1=0.333 π1=0.315 π1=0.260
π2=0.333 π2=0.315 π2=0.370
π3=0.334 π3=0.370 π3=0.370
g1=0.333 g1=0.500 g1=1.000
g2=0.333 g2=0.500
g3=0.334
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Simulation study Parameter estimates

Parameter estimates error bars: Scenario 1
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Simulation study Parameter estimates

Parameter estimates error bars: Scenario 2

−0.75

−0.70

−0.65

−0.60

−0.55

300 1000 3000
Number of rows (n)

V
al

ue

S2  µ̂1

1.20

1.25

1.30

1.35

1.40

1.45

300 1000 3000
Number of rows (n)

V
al

ue

S2  µ̂2

−2.1

−2.0

−1.9

−1.8

300 1000 3000
Number of rows (n)

V
al

ue

S2  α̂1

−0.10

−0.05

0.00

0.05

0.10

300 1000 3000
Number of rows (n)

V
al

ue

S2  α̂2

−2.10
−2.05
−2.00
−1.95
−1.90
−1.85

300 1000 3000
Number of rows (n)

V
al

ue

S2  β̂1

−1.65
−1.60
−1.55
−1.50
−1.45
−1.40

300 1000 3000
Number of rows (n)

V
al

ue

S2  β̂2

0.20

0.25

0.30

0.35

0.40

300 1000 3000
Number of rows (n)

V
al

ue

S2  β̂3

0.90

0.95

1.00

1.05

1.10

300 1000 3000
Number of rows (n)

V
al

ue

S2  β̂4

0.275

0.300

0.325

0.350

0.375

300 1000 3000
Number of rows (n)

V
al

ue

S2  π̂1

0.25

0.30

0.35

300 1000 3000
Number of rows (n)

V
al

ue

S2  π̂2

Ying Cui Victoria University of Wellington AASC2024 13 / 23



Simulation study Parameter estimates

Parameter estimates error bars: Scenario 3
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Case study: Salmon fish from Cawthron

Case study: Salmon fish from Cawthron

* New Zealand’s largest independent science organization, the Cawthron
Institute in the aquaculture sector.

* Cawthron Institute runs many different trials and collects data from salmon
in commercial farms in New Zealand.

* Cawthron collected a variety of health markers, such as blood, growth
performance, feeding condition, nutrient composition, and histology of
individual tissues for fish.

* Some of the markers are gathered in a destructive manner which makes the
corresponding markers expensive to collect. Thus, the Cawthron Institute
would like to know which other non-destructive markers can be used as
proxies for fish health.
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Case study: Salmon fish from Cawthron Labeled clusters generation

Case study: labeled clusters generation

* The initial known cluster memberships are generated from previous existing
unsupervised model-based row clustering approach using the proportional
odds model (Matechou et al., 2016).

* The data has 460 fish and 9 destructively-collected histology measurement
variables, each ordinal response has 4 categories which represent the level of
abnormality.

* AIC and BIC choose the Model with R = 3 row clusters (linear predictor:
µk − αr − βj − γrj).
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Case study: Salmon fish from Cawthron Three levels of fish health status

Case study: Three levels of fish health status

77

210

173

0

50

100

150

200

250

1 2 3
Cluster

n

(a)

0

10

20

30

1 2 3
Cluster

R
aw

 h
is

to
lo

gy
 s

co
re

(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40
Raw histology score

D
en

si
ty

Cluster 1 2 3

(c)

Ying Cui Victoria University of Wellington AASC2024 17 / 23



Case study: Salmon fish from Cawthron Semi-supervised row clustering model

Case study: Large data with Growth measurement features

* This large dataset has 3488 salmon fish (with 460 labeled fish) as the rows,
values of condition factor (Froese, 2006) at 8 time stages as the columns.

*

CF =

(
W

L3

)
× 100, 000. (4.1)

where:

W represents the fish weight(g).
L is the fish fork length(mm).

* For CF in each time stage, we code the value from quantile 0% to 25%,
25% to 50%, 50% to 75%, and 75% to 100% as ordinal response 1, 2, 3,
and 4 correspondingly.
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Case study: Salmon fish from Cawthron Model selection

Case study: Model selection

Table 2: Suit of semi-supervised row clustering models with fitted R̂ = 3 applied
on the data with variable condition factor (CF) at 8 different time stages.

Information Criteria logit [P (Yij ≤ k)] , 1 ≤ k ≤ q

µk − αr µk − αr − βj µk − αr − βj − γrj
AIC 48336.2 48257.9 47792.9
AICc 48336.2 48257.9 47793.0
AICu 48344.2 48272.9 47822.0
AIC3 48343.2 48271.9 47820.9
BIC 48393.8 48373.2 48023.5
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Case study: Salmon fish from Cawthron Scatterplots of CF at 8 stages for three clusters

Case study: Scatterplots of CF at 8 stages for three
clusters
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Discussion

Discussion

* The semi-supervised model-based clustering approach takes into account the
ordinal nature of the response data and incorporates information about
existing clustering memberships to cluster data with unknown memberships.

* A simulation study was conducted and the results indicate the model
parameter estimation perform well in defined scenarios.

* Clustering pattern detected for classifying the health status of fish Trial data
collected from Cawthron. The unhealthy fish are likely to be fat and short
when they grow up.
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Further study

Further study

* Evaluate the performance of parameter estimation in other scenarios.

* Aim to develop another semi-supervised clustering strategy using the ordered
stereotype model as the basic structure, and the corresponding R package
will be built.

* Conduct the clustering analysis for fish farm data collected from Cawthron
to classify the fish health.
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Further study
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