Confidence intervals for proportions estimated by pooled testing based on Firth's bias correction

Brad J. Biggerstaff ¹ and Graham Hepworth² ¹Centers for Disease Control and Prevention, Colorado, USA ²Statistical Consulting Centre, The University of Melbourne

Testing pools (groups) of insects to estimate the prevalence *p* of a disease

CDC testing mosquitoes

Trapping black flies in Africa

MLE: found by iteration, and positively biased.

Inference on p

Point estimation:

- "MIR" (*minimum infection rate*, biased low)
- MLE (biased high)
- Gart bias correction
- Firth's bias correction

Interval estimation:

- Standard likelihood-based CIs
- Score interval with skewness correction

Applying Firth's score adjustment

Considered point estimation

- Problem: MLE is biased
- Solution
 - Bias in MLE due to E[S(p)] = 0 at true p; curvature of S(p)
 - Introduce "small bias into the score function" S(p)

Expected information $\breve{S}(p) = S(p) - I(p)b(p)$

Observed information

$$\dot{S}(p) = S(p) - i(p)b(p)$$

Bias of estimators: 500 individuals in 5 pools of 5, 5 pools of 10, 5 pools of 25, 6 pools of 50 $500: 5^5 10^5 25^5 50^6$

CONSULTING

CENTRE

Motivation

- With the improved performance for point estimation using Firth's correction, we sought to develop CIs based on Firth's corrected score function.
- Shifts and "squeezes" the standard log-likelihood.
- Natural to view in the framework of penalized likelihood inference.

What we found

- Firth-based penalized CIs with expected information are computationally the same as standard score-based intervals.
- Penalized likelihood is a consistent inferential framework for point and interval estimation, unifying existing recommended methods.
- Using observed information made a small difference in most situations. The difference was greater for "unlikely" outcomes (more positives in smaller pools than in larger pools).

Example: Fort Collins West Nile virus

- City of Fort Collins, Colorado, collects and tests mosquitoes for West Nile virus weekly throughout the transmission season
- Decisions on mosquito abatement measures are based, in part, on estimates of WNV infection rates
- Data from one city quadrant in week 35 of 2016: 108 mosquitoes
- 14 pools, 2 positive pools (one of size 1, one of size 5)
- $108: 1_1^2 2_0^1 4_0^1 5_1^1 6_0^2 10_0^1 11_0^1 12_0^4 14_0^1$

Example: Fort Collins WNV CIs

WNV prevalence estimates (per 1,000 mosquitoes)

Method	Information	p	Lower	Upper	
Score	Expected	18.090	5.207	57.752	
Score	Observed	18.000	5.199	57.452	
Skew-corrected Score	Expected	18.090	3.457	56.871	
Skew-corrected Score	Observed	18.000	3.453	56.577	

Confidence interval evaluation

- 59 pooling configurations
- 1000 values of p in (0, ψ) $\psi = p$ such that Pr(all pools positive) = 0.05
- Coverage (exact)
- Expected length
- Directional non-coverage

Cl evaluation: example coverage

2500:5¹⁰ 50⁴⁹

EPS OPS EPSS OPSS Coverage Coverage Coverage Coverage 0.96 0.96 0.96 0.96 0.90 0.90 0.90 0.90 0.00 0.10 0.20 0.00 0.10 0.20 0.00 0.10 0.20 0.00 р р р

STATISTICAL CONSULTING - CENTRE -

0.20

0.10

р

CI evaluation: overall coverages

CI evaluation: overall results

			Exp	Left	Right	Cov
Method	Information	Coverage	Length	NC	NC	Symm
Score	Expected	94.93	5.546	2.856	2.207	12.82
Score	Observed	94.92	5.529	2.884	2.193	13.62
Skew	Expected	95.21	5.815	2.292	2.495	-4.23
Skew	Observed	95.21	5.801	2.290	2.496	-4.30

Coverage Symmetry = difference in percent non-coverage = 100(Left NC – Right NC)/(Left NC + Right NC)

Cl evaluation: summary

- Skewness correction works as expected (and seen previously)
 - Improves coverage
 - Symmetrizes non-coverage
- Expected and observed information are almost the same
 - This is an overall "averaging" result
 - Not surprising, since E[i(p)] = I(p)
 - Observed information does better for unlikely outcomes

PooledInfRate R Package

Other R pacakges: binGroup2, binGroup

References

G. Hepworth & B.J. Biggerstaff (2017). Bias correction in estimating proportions by pooled testing. *JABES* 22:602–614.

G. Hepworth & B.J. Biggerstaff (2021). Bias correction in estimating proportions by imperfect pooled testing. *JABES* 22:602–614.

D. Firth (1993). Bias reduction of maximum likelihood estimates. *Biometrika* 80:27–38.

B.J. Biggerstaff & G. Hepworth. Confidence intervals for a proportion estimated from pooled samples based on Firth's corrected score. Submitted to *Biometrical Journal*.

