Optimising Twin Uniform Distribution for Multiplicative Noise Data Masking

Pauline Ding*, University of Wollongong, Australia

AASC 2024 This is a joint work with H. Rowles, J. Brackenbury and Y.X. Lin

UNIVERSITY OF WOLLONGONG AUSTRALIA

Multiplicative Noise for Data Masking

• The perturbed value for measure X_i of the *i*th individual is

 $\tilde{X}_i = X_i \times M_i$.

- M_i is a random multiplicate noise, i.i.d. sampled from noise M.
- Multiplicative Noise scheme has uniform protection regardless of original data value.
- Careful selection of *M* can lead to desirable statistical disclosure control results, i.e.,
 - remaining accurate statistical properties and
 - avoiding value disclosure.

Multiplicative Noise for Data masking Twin Uniform Noise Distribution

• Brackenbury et al (2020) proposed a *twin uniform* distribution for M

$$f_M(m) = \begin{cases} \frac{1}{2\mu(\alpha_{\max} - \alpha_{\min})}, & m \in A\\ 0, & \text{else,} \end{cases}$$
(1)

where $A = [\mu(1-\alpha_{\max}), \mu(1-\alpha_{\min})] \cup [\mu(1+\alpha_{\min}), \mu(1+\alpha_{\max})]$ for $\mu \in \mathbb{R}$ and $\alpha_{\min} < \alpha_{\max} \in \mathbb{R}^+$. (1) is denoted as $M \sim \text{TwinUnif}(\mu, \alpha_{\min}, \alpha_{\max})$.

Multiplicative Noise for Data masking Twin Uniform Noise Distribution

Brackenbury et al (2020) proposed a twin uniform distribution for M

$$f_M(m) = \begin{cases} \frac{1}{2\mu(\alpha_{\max} - \alpha_{\min})}, & m \in A\\ 0, & \text{else,} \end{cases}$$
(1)

where $A = [\mu(1 - \alpha_{\max}), \mu(1 - \alpha_{\min})] \cup [\mu(1 + \alpha_{\min}), \mu(1 + \alpha_{\max})]$ for $\mu \in \mathbb{R}$ and $\alpha_{\min} < \alpha_{\max} \in \mathbb{R}^+$. (1) is denoted as $M \sim \text{TwinUnif}(\mu, \alpha_{\min}, \alpha_{\max})$.

• Primary Disclosure Risk

$$p_{\delta}(\alpha_{\max}, \alpha_{\min}) = P\left(\left|\frac{\hat{X}_i - X_i}{X_i}\right| < \delta\right) = P\left(\left|\frac{M}{\mu} - 1\right| < \delta\right)$$
$$= P[\mu(1 - \delta) < M < \mu(1 - \alpha_{\min})] + P[\mu(1 + \alpha_{\min}) < M < \mu(1 + \delta)]$$
$$= \frac{\delta - \alpha_{\min}}{\alpha_{\max} - \alpha_{\min}}.$$

• Primary Disclosure Risk

$$p_{\delta}(\alpha_{\max}, \alpha_{\min}) = P\left(\left|\frac{\hat{X}_i - X_i}{X_i}\right| < \delta\right) = P\left(\left|\frac{M}{\mu} - 1\right| < \delta\right)$$
$$= P[\mu(1 - \delta) < M < \mu(1 - \alpha_{\min})] + P[\mu(1 + \alpha_{\min}) < M < \mu(1 + \delta)]$$
$$= \frac{\delta - \alpha_{\min}}{\delta - \alpha_{\min}}.$$

 $\alpha_{\rm max} - \alpha_{\rm min}$

• Primary disclosure risk can be eliminated when setting $\alpha_{min} = \delta$.

• Primary Disclosure Risk

$$p_{\delta}(\alpha_{\max}, \alpha_{\min}) = P\left(\left|\frac{\hat{X}_i - X_i}{X_i}\right| < \delta\right) = P\left(\left|\frac{M}{\mu} - 1\right| < \delta\right)$$
$$= P[\mu(1 - \delta) < M < \mu(1 - \alpha_{\min})] + P[\mu(1 + \alpha_{\min}) < M < \mu(1 + \delta)]$$
$$= \frac{\delta - \alpha_{\min}}{\delta - \alpha_{\min}}.$$

 $\alpha_{\rm max} - \alpha_{\rm min}$

• Primary disclosure risk can be eliminated when setting $\alpha_{min} = \delta$.

- Secondary Disclosure Risk
 - An issue of regression risk $corr(\tilde{X}_i, X_i)$
 - Ma et al (2019) showed that a correlation below 0.8 gives large enough estimation uncertainty.
 - α_{max} needs to be large enough.

• Primary Disclosure Risk

$$p_{\delta}(\alpha_{\max}, \alpha_{\min}) = P\left(\left|\frac{\hat{X}_i - X_i}{X_i}\right| < \delta\right) = P\left(\left|\frac{M}{\mu} - 1\right| < \delta\right)$$
$$= P[\mu(1 - \delta) < M < \mu(1 - \alpha_{\min})] + P[\mu(1 + \alpha_{\min}) < M < \mu(1 + \delta)]$$
$$= \frac{\delta - \alpha_{\min}}{\delta - \alpha_{\min}}.$$

 $\alpha_{\rm max} - \alpha_{\rm min}$

• Primary disclosure risk can be eliminated when setting $\alpha_{min} = \delta$.

- Secondary Disclosure Risk
 - An issue of regression risk $corr(\tilde{X}_i, X_i)$
 - Ma et al (2019) showed that a correlation below 0.8 gives large enough estimation uncertainty.
 - α_{max} needs to be large enough.
- Shifting
 - To avoid no perturbation to X_i = 0, shifted multiplicative masked data is

 $\hat{Y}_i = (X_i + a)M_i,$

- \hat{Y}_i is an unbiased estimator of X_i
- Estimator of the sum is unbiased.

Parameters for Optimisation

2 Parameters: α_{max} , a (shift)

• Regression Risk

$$corr_{M;\hat{Y}_i,Y_i}(\alpha_{max},a) = \frac{cov(\hat{Y}_i,Y_i)}{\sqrt{Var(\hat{Y}_i)Var(Y_i)}}$$
$$= \frac{Var(X_i)}{\sqrt{Var(X_i)^2 + \frac{\alpha_{\max}^2 + \alpha_{\max}\alpha_{\min} + \alpha_{\min}^2}{3}[E(X_i) + a]^2}}$$

- Utility (of the sum)
 - Conditional standard error (CSE) given observed {X_i} is

$$CSE_M(\alpha_{max}, a) = \sqrt{\frac{\alpha_{max}^2 + \alpha_{max}\alpha_{min} + \alpha_{min}^2}{3}} \sum_{i=1}^N (X_i + a)^2$$

Parameters for Optimisation

2 Parameters: α_{max} , a (shift)

Regression Risk

$$corr_{M;\hat{Y}_i,Y_i}(\alpha_{max},a) = \frac{cov(\hat{Y}_i,Y_i)}{\sqrt{Var(\hat{Y}_i)Var(Y_i)}}$$
$$= \frac{Var(X_i)}{\sqrt{Var(X_i)^2 + \frac{\alpha_{\max}^2 + \alpha_{\max}\alpha_{\min} + \alpha_{\min}^2}{3}[E(X_i) + a]^2}}$$

- Utility (of the sum)
 - Conditional standard error (CSE) given observed {X_i} is

$$CSE_M(\alpha_{max}, a) = \sqrt{\frac{\alpha_{max}^2 + \alpha_{max}\alpha_{min} + \alpha_{min}^2}{3}} \sum_{i=1}^N (X_i + a)^2$$

		Effects on Measures	
Parameter	Change		Estimation Error
		$\operatorname{corr}_M(\hat{Y}_i, Y_i)$	CSE_M
Shift Value	1	\downarrow	†
a	\downarrow	↑	\rightarrow
Upper bound	1	\downarrow	1
α_{\max}	\downarrow	1	\downarrow

Normalisation of the measures

 $g_{norm}(x) = \frac{g(x) - \min[g(x)]}{\max[g(x)] - \min[g(x)]}.$

•
$$\operatorname{corr}_{norm}(\alpha_{max}, a) = \frac{\operatorname{corr}_M(\alpha_{max}, a) - \min[\operatorname{corr}_M(\alpha_{max}, a)]}{\max[\operatorname{corr}_M(\alpha_{max}, a)] - \min[\operatorname{corr}_M(\alpha_{max}, a)]}$$

and

$$CSE_{norm}(\alpha_{max}, a) = \frac{CSE_M(\alpha_{max}, a) - \min[CSE_M(\alpha_{max}, a)]}{\max[CSE_M(\alpha_{max}, a)] - \min[CSE_M(\alpha_{max}, a)]}$$

$$g_{norm}(x) = \frac{g(x) - \min[g(x)]}{\max[g(x)] - \min[g(x)]}.$$

Normalisation of the measures

Normalisation of the measures

$$g_{norm}(x) = \frac{g(x) - \min[g(x)]}{\max[g(x)] - \min[g(x)]}.$$

$$corr_{norm}(\alpha_{max}, a) = \frac{corr_M(\alpha_{max}, a) - \min[corr_M(\alpha_{max}, a)]}{\max[corr_M(\alpha_{max}, a)] - \min[corr_M(\alpha_{max}, a)]}$$
and

$$CSE_{norm}(\alpha_{max}, a) = \frac{CSE_M(\alpha_{max}, a) - \min[CSE_M(\alpha_{max}, a)]}{\max[CSE_M(\alpha_{max}, a)] - \min[CSE_M(\alpha_{max}, a)]}.$$

Linear weighted sum optimisation method

$$g_{combinded}(\alpha_{max}, a) = W_1 \cdot \operatorname{corr}_{norm}(\alpha_{max}, a) + W_2 \cdot CSE_{norm}(\alpha_{max}, a)$$
$$= 0.5 \operatorname{corr}_{norm}(\alpha_{max}, a) + 0.5 CSE_{norm}(\alpha_{max}, a).$$

Normalisation of the measures

 $g_{norm}(x) = \frac{g(x) - \min[g(x)]}{\max[g(x)] - \min[g(x)]}.$

$$\operatorname{corr}_{norm}(\alpha_{max}, a) = \frac{\operatorname{corr}_{M}(\alpha_{max}, a) - \min[\operatorname{corr}_{M}(\alpha_{max}, a)]}{\max[\operatorname{corr}_{M}(\alpha_{max}, a)] - \min[\operatorname{corr}_{M}(\alpha_{max}, a)]}$$

and

$$CSE_{norm}(\alpha_{max}, a) = \frac{CSE_M(\alpha_{max}, a) - \min[CSE_M(\alpha_{max}, a)]}{\max[CSE_M(\alpha_{max}, a)] - \min[CSE_M(\alpha_{max}, a)]}.$$

Linear weighted sum optimisation method

$$g_{combinded}(\alpha_{max}, a) = W_1 \cdot \operatorname{corr}_{norm}(\alpha_{max}, a) + W_2 \cdot CSE_{norm}(\alpha_{max}, a)$$
$$= 0.5 \operatorname{corr}_{norm}(\alpha_{max}, a) + 0.5 CSE_{norm}(\alpha_{max}, a).$$

The solution for minizine the combined objective is not unique.

Real Data Illustration

2019/20 US Public Companies Accounts Payable Data of 5 companies

• Aim: to protect individual transaction but allow total yearly debt (sum) accurately estimated.

Real Data Illustration

2019/20 US Public Companies Accounts Payable Data

 Aim: to protect individual transaction but allow total yearly debt (sum) accurately estimated.

Equally weighted sum optimisation with normalisations

 $g_{combinded,c}(\alpha_{max}, a) = 0.5 \operatorname{corr}_{norm,c}(\alpha_{max}, a) + 0.5 CSE_{norm,c}(\alpha_{max}, a)$

Fig. 5: 3D plot of $g_{combinded,c}$ (10) for five companies against α_{max} and a.

Results and Closing Remarks

• We selected optimal values for α_{max} and a, showed good performance in the empirical measure of disclosure (sample correlation) and utility (relative error of sum estimates).

Company	Optimal (α_{max}, a)	Sample Correlation	Relative Error of Sum
1	(0.914, 4.54)	0.463	0.052
2	(0.571, 65.66)	0.204	0.064
3	(0.657, 0.78)	0.623	0.018
4	(0.519, 1.96)	0.586	0.01
5	(0.373, 0.55)	0.523	0.023

Results and Closing Remarks

• We selected optimal values for α_{max} and a, showed good performance in the empirical measure of disclosure (sample correlation) and utility (relative error of sum estimates).

Company	Optimal (α_{max}, a)	Sample Correlation	Relative Error of Sum
1	(0.914, 4.54)	0.463	0.052
2	(0.571,65.66)	0.204	0.064
3	(0.657, 0.78)	0.623	0.018
4	(0.519, 1.96)	0.586	0.01
5	(0.373, 0.55)	0.523	0.023

Closing remarks

- Twin uniform distribution can be optimisation in term of disclosure and utility simultaneously.
- Multi-objective optimisation with normalisation allows derivation of optimal solutions, which is case dependent and not unique.

Thanks for your time. poshaugh@uow.edu.au

UNIVERSITY OF WOLLONGONG AUSTRALIA