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Designh problem

Motivation
* With an Australian producer, we aim to increase our understanding
of avocado growth in Australian conditions

* Thisis to ensure the production of high quality, robust fruit

* Indicator of quality: Dry matter (also indicator of flavour)

* Propose to undertake sampling throughout growing season

Problem
* Need an efficient sampling design. Methods available but depend on prior information

* No previous studies were found in the literature that described avocado growth in Australian
conditions but found studies conducted overseas

 Canuse this as a source of prior information but need to account for potential misspecification
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Typical Bayesian desigh solution

* Seek priorinformation e.g. model and parameters 02-

Dry matter

* Based on previous research, sigmoidal growth curves have been
proposed to describe dry matter for avocados and many other fruit. o

 E.g. Gompertz model: y - response (dry matter)

t-time il
r —growth rate 0 10 _ 20
dy A . ) Time
Y log (‘) ; y~N(E[ylt,r,1],0,%) A - carrying capacity
Y 0= (r,1,0,%)

* Propose a goal of data collection e.g. learn about model parameters
* Form an expected utility function then maximise through choice of design (here time points) e.g.

u(d) = E,glu(d,y, 0)]
_ j j u(d,y,0) p(y,0 | d) do dy d* = argmax U (d)
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Proposed solution

* Form designs based on flexible models
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* Exploit flexibility to provide robust designs 3%
®o2
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 E.g.aflexible Gompertz model Sog |
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K =no. of knots, b = additional parameters, T = knots, (tk — Tk) = spline basis fn gf / ; ,
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* Then, extend expected utility function: Time

U(d) = Ey g »[u(d,y,0,b)]
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* Found designs under a range of flexible models i.e. “very low”, “low”, “medium” and “high”, and
evaluated robustness properties of these designs.



Resulting designs

Gompertz (Very low)
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Relative Efficiency

Robustness properties of designs

» Evaluate design efficiency: Measures expected information gain of design d relative to d*

Eff(d,d") = U(d)/U(d")

* E.g. Suppose d based on Gompertz model. Find d* based on assuming alternative Logistic growth.

« Evaluate efficiency assuming Logistic growth then (e.g.) 0.5 would suggest twice as much sampling
would need to be undertaken with d to obtain as much information as d*
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Gom'pertz Richards Weibull Log'istic
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Gom'pertz Richards Weibull Log'istic
Data Generating Model
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Concluding remarks

* Proposed an approach to find Bayesian designs where prior information is potentially
misspecified

* Needed for motivating design problem as prior information was based on studies conducted
overseas

* Demonstrated robustness properties of resulting designs e.g. these remain efficient despite
alternative growth models potentially being more appropriate to describe the data

* Increased flexibility led to increased robustness to alternative models (in our scenario)
* Arange of models considered but only presented results for Gompertz model

* Limitation: Only considered one approach to allow the ODE to be more flexible. Other options
available e.g. alternative inclusion/formulation of the spline term, Gaussian processes, etc.

* Limitation: Still assumption dependent e.g. assumed data are normally distributed.
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