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Design problem
Motivation
• With an Australian producer, we aim to increase our understanding 

of avocado growth in Australian conditions

• This is to ensure the production of high quality, robust fruit

• Indicator of quality: Dry matter (also indicator of flavour)

• Propose to undertake sampling throughout growing season

Problem
• Need an efficient sampling design.  Methods available but depend on prior information

• No previous studies were found in the literature that described avocado growth in Australian 
conditions but found studies conducted overseas

• Can use this as a source of prior information but need to account for potential misspecification



Typical Bayesian design solution
• Seek prior information e.g. model and parameters

• Based on previous research, sigmoidal growth curves have been 
proposed to describe dry matter for avocados and many other fruit.

• E.g. Gompertz model:
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𝑦 – response (dry matter)

𝑡 – time

𝑟 – growth rate

𝜆 – carrying capacity
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• Propose a goal of data collection e.g. learn about model parameters

• Form an expected utility function then maximise through choice of design (here time points) e.g. 
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Proposed solution
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• Form designs based on flexible models

• Exploit flexibility to provide robust designs

• E.g. a flexible Gompertz model

K = no. of knots, b = additional parameters, τ = knots, 𝑡𝑘 − 𝜏𝑘 = spline basis fn
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• Then, extend expected utility function:

• Found designs under a range of flexible models i.e. “very low”, “low”, “medium” and “high”, and 
evaluated robustness properties of these designs.



Resulting designs



Robustness properties of designs
• Evaluate design efficiency:  Measures expected information gain of design 𝑑 relative to 𝑑∗

𝐸𝑓𝑓(𝑑, 𝑑∗) = 𝑈(𝑑)/𝑈(𝑑∗)

• E.g. Suppose 𝑑 based on Gompertz model.  Find 𝑑∗ based on assuming alternative Logistic growth.

• Evaluate efficiency assuming Logistic growth then (e.g.) 0.5 would suggest twice as much sampling 
would need to be undertaken with 𝑑 to obtain as much information as 𝑑∗



Concluding remarks
• Proposed an approach to find Bayesian designs where prior information is potentially 

misspecified

• Needed for motivating design problem as prior information was based on studies conducted 
overseas

• Demonstrated robustness properties of resulting designs e.g. these remain efficient despite 
alternative growth models potentially being more appropriate to describe the data

• Increased flexibility led to increased robustness to alternative models (in our scenario)

• A range of models considered but only presented results for Gompertz model

• Limitation: Only considered one approach to allow the ODE to be more flexible.  Other options 
available e.g. alternative inclusion/formulation of the spline term, Gaussian processes, etc.

• Limitation: Still assumption dependent e.g. assumed data are normally distributed.
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