Spatial modelling of plant data with the R-packages ASRem1-R and asrem1Plus

Chris Brien

Australian Centre for Plant Functional Genomics, University of Adelaide.

Outline

- 1. The spatial models for two-dimensional plant data.
- 2. Functions in **asremlPlus** for fitting and comparing spatial models.
- 3. An example.
- 4. Summary.

1. Two types of spatial models for twodimensional plant data

- Variance models: these model the variance.
 - > **asrem1** has many functions that can model the variance.
 - A very common model is one that assumes separable, first-order autocorrelation (ar1).
- Tensor-product spline models: these model a surface.
 - asreml provides natural cubic smoothing splines that can be used to fit a tensor-product spline (TPNCSS);
 - **TPSbits** (Welham, 2022), which has been incorporated into **asremlPlus**, can fit tensor-product linear and cubic splines (TPPSL1 & TPPSC2).
- The function addSpatialModel from asremlPlus can fit a wide range of variance and tensor-product P-spline models.

The spatial model used in asremlPlus

The model, an adaptation of Cullis et al. (1997), is of the form:

 $\mathbf{y} = \mathbf{1}\boldsymbol{\mu} + \mathbf{X}_{\mathrm{t}}\boldsymbol{\tau} + \mathbf{X}_{\mathrm{d}}\boldsymbol{\beta}_{\mathrm{d}} + \mathbf{Z}_{\mathrm{d}}\mathbf{u}_{\mathrm{d}} + \mathbf{Z}_{\ell}\mathbf{u}_{\ell} + \mathbf{e}$

- \succ μ is the overall mean for the experiment;
- > τ : fixed treatment effects with indicator matrix X_t ; (could be random)
- > β_d : fixed large-scale spatial (design) effects with indicator matrix X_d ;
- > \mathbf{u}_d : random large-scale spatial (design) effects with indicator matrix \mathbf{Z}_d and each set of effects assumed to be $N(0, \sigma_i^2 \mathbf{I}_{n_i})$
- u_ℓ: random local spatial effects with indicator matrix Z_ℓ assumed to be N(0, Σ)
 - $_{\circ}~$ e.g. Σ could be specify separable ar1 or it could involve spline terms;
- ▶ e: residual effects assumed to be $N(0, \sigma^2 \mathbf{I}_n)$ or $N(0, \bigoplus_k \sigma_k^2 \mathbf{I}_{n_k})$.

Features of spatial models in asremlPlus

- The roles of random and residual terms are reversed from the traditional specification of spatial models:
 - > Random terms $(\mathbf{Z}_{\ell}\mathbf{u}_{\ell})$ are used to model local spatial variation.
 - > Residual terms (e) represent individual-specific variability.
- Separate models for different sections of the data can be specified.
- Each section is assumed to consist of a two-dimensional, possibly irregular, grid.

Generically, the dimensions are labelled rows and cols.

Local spatial variation at other than the unit level can be fitted e.g. main units.

2. Functions in asremlPlus for fitting and comparing spatial models

- addSpatialModel: adds a spatial model to a fitted initial model.
- addSpatialModelOnIC: adds a spatial model to a fitted initial model when the fit is improved according to an information criterion (AIC, BIC).
 - One can fit one of (i) a variance model based on a patterned correlation matrix (corr),
 (ii) a TPNCSS model, or (iii) a TPPS model.
 - > There are several arguments for specifying the type of P-spline model.
- chooseSpatialModelOnIC: fits four spatial models and chooses the model with the best fit according to either the AIC or BIC.
 - The models that can be compared are restricted to (i) corr, (ii) TPNCSS, (iii) TPPSC2, and (iv) TPPSL1.

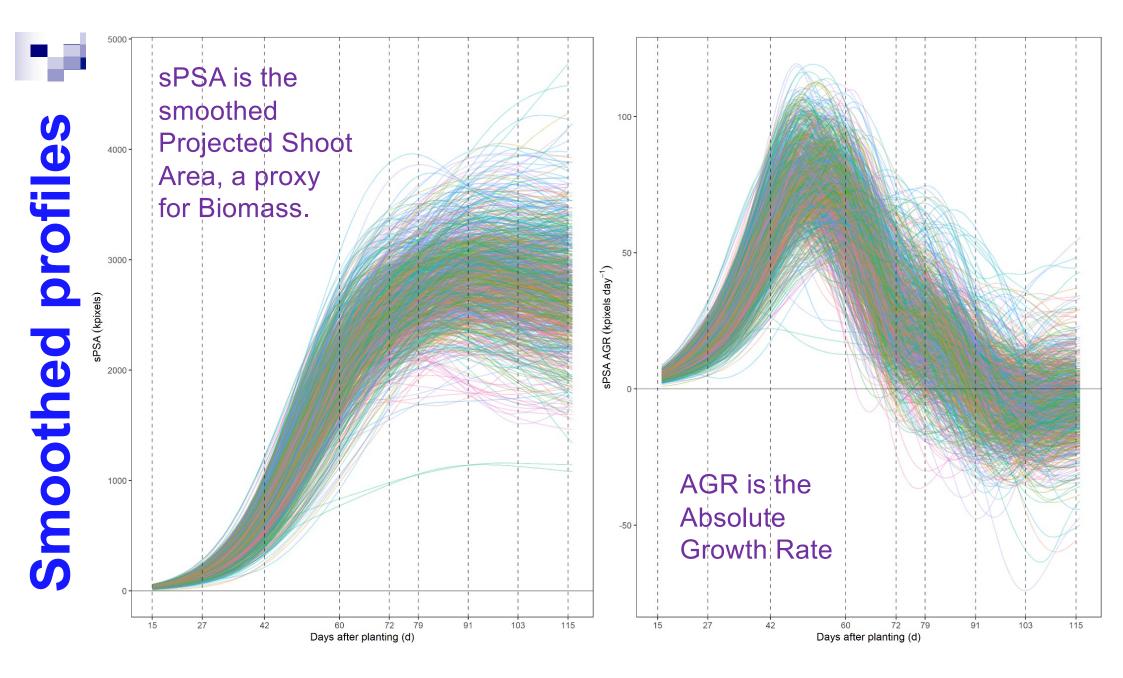
Selecting models using information criteria in asremlPlus

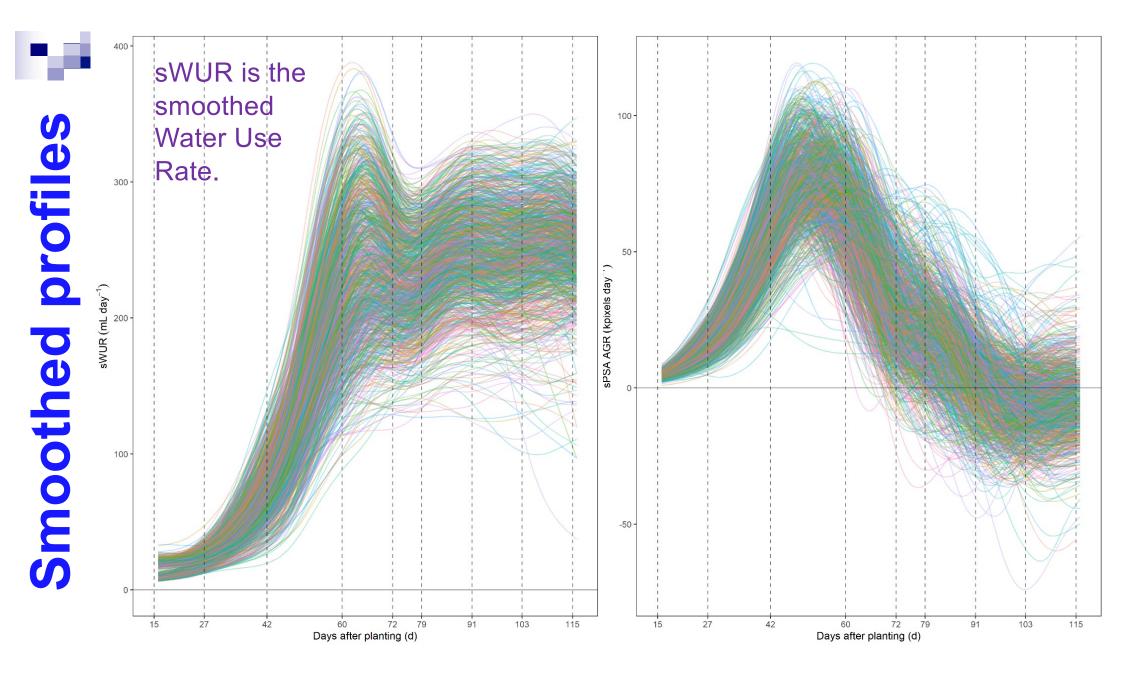
- Required because we are not comparing nested models.
- Can be based on the REML or the full likelihood (Verbyla, 2019).
- For correlation models, deciding whether to add a spatial model is done independently for each dimension within each section.
- For spline models, the selection of models is done independently for each section.

3. An example

- A high-throughput, phenotyping experiment was run in 2 Smarthouses at the Adelaide Plant Accelerator.
 - > 215 Barley varieties had 5+ replicates for a total of 1110 pots with a single plant.
 - Varieties allocated using a latinized, semiresolved, incomplete block design:
 - o optimized using the R package odw (Butler, 2021);
 - randomized using dae (Brien, 2024).
 - The grid in each Smarthouse is irregular and the number of pots differs between the Smarthouses.
 - > Blocks were irregular and subBlocks were mostly 3×5.
 - > The 1110 plants were each imaged for 100 days:
 - 111,000 values per trait.

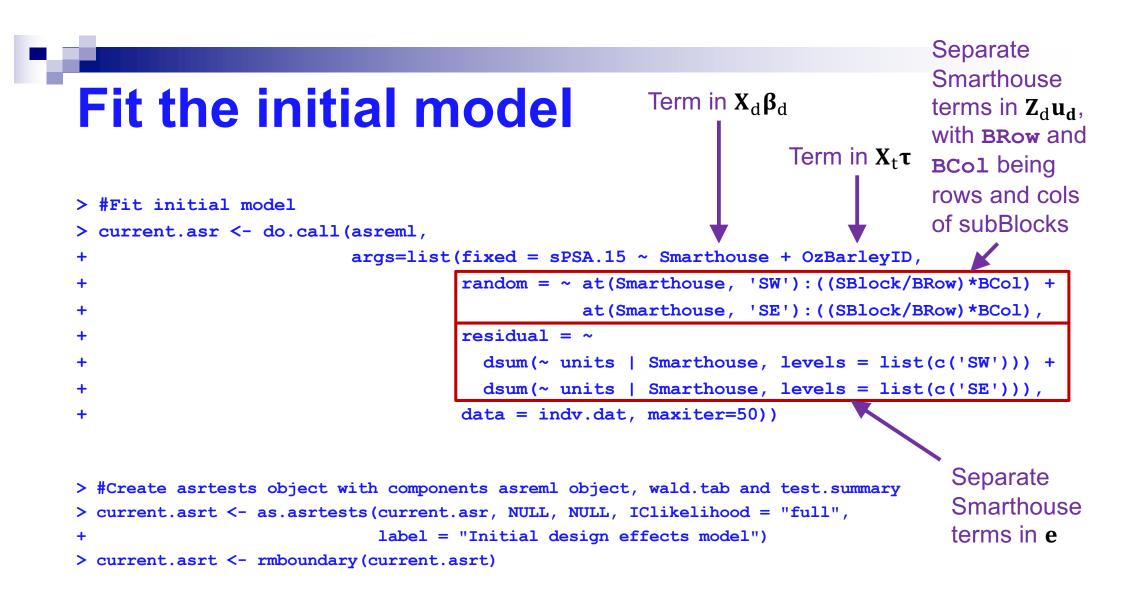
Lane 1 12

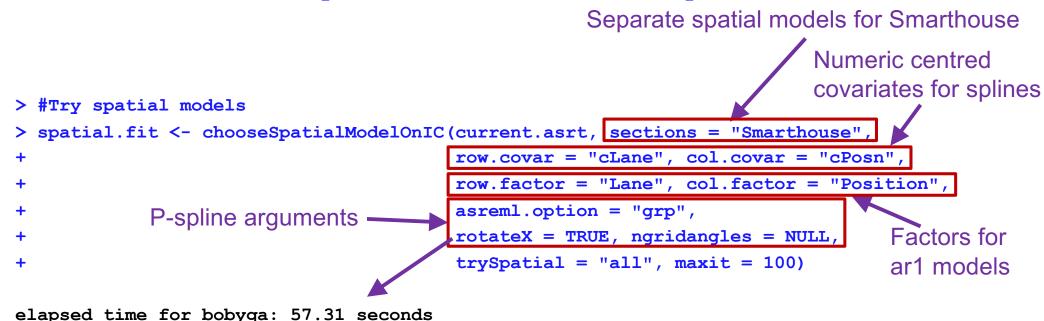

Position																											
	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
24		6	6	6	6	6	5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	2
23	6	6	6	6	6	6	5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	
22	ſ	14	14	14	14	14	13	13	13	13	13	12	12	12	12	12	11	11	11	11	11	1	1	1	1	1	
21		14	14	14	14	14	13	13	13	13	13	12	12	12	12	12	11	11	11	11	11	1	1	1	1	1	:
20		14	14	14	14	14	13	13	13	13	13	12	12	12	12	12	11	11	11	11	11	1	1	1	1	1	
19		10	10	10	10	10	9	9	9	9	9	8	8	8	8	8	7	7	7	7	7	6	6	6	6	6	
18	10	10	10	10	10	10	9	9	9	9	9	8	8	8	8	8	7	7	7	7	7	6	6	6	6	6	
17	10	10	10	10	10	10	9	9	9	9	9	8	8	8	8	8	7	7	7	7	7	6	6	6	6	6	
16	Γ	5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1	1
15		5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1	ane
3 1 14		5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1	· ۲
13		5	5	5	5	5	4	4	4	4	4		13	13	13	13	12	12	12	12	12	11	11	11	11	11	
12	15	15	15	15	15	15	14	14	14	14	14	13	13	13	13	13	12	12	12	12	12	11	11	11	11	11	1
11	15	15	15	15	15	15	14	14	14	14	14	13	13	13	13	13	12	12	12	12	12	11	11	11	11	11	
10	10	10	10	10	10	10	9	9	9	9	9	8	8	8	8	8	7	7	7	7	7	6	6	6	6	6	
9	10	10	10	10	10	10	9	9	9	9	9	8	8	8	8	8	7	7	7	7	7	6	6	6	6	6	
8	10	10	10	10	10	10	9	9	9	9	9	8	8	8	8	8	7	7	7	7	7	6	6	6	6	6	
7	5	5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1	
6	5	5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1	
5	5	5	5	5	5	5	4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1	


SE Smarthouse

					_		_	-				-	osi				. –									
	1	2	3	4	5	6	7	8	9		11	12	13		-	16			19	20	21	22	23	24	25	26
24 -	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14	15	15	15	15	15	16	16	16	16	16	16
23 -	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14	15	15	15	15	15	16	16	16	16	16	16
22 -	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14	15	15	15	15	15	16	16	16	16	16	16
21 -	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	11	11	11	11	11	11
20 -	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	11	11	11	11	11	11
19-	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	11	11	11	11	11	11
18-	11	11	11	11	11	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14						
17 -	11	11	11	11	11	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14						
16-	11	11	11	11	11	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14						
15-	6	6	6	6	6	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	
14 -	6	6	6	6	6	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	10
13 -	6	6	6	6	6	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	10
12 -	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	
11 -	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	
10 -	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	
9 -	11	11	11	11	11	12	12	12	12	12	13	13	13	13		4	4	4	4	4	5	5	5	5	5	
8-	11	11	11	11	11	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14	15	15	15	15	15	15
7-	11	11	11	11	11	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14	15	15	15	15	15	15
6-	6	6	6	6	6	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	10
5 -	6	6	6	6	6	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	10
4 -	6	6	6	6	6	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	10
3 -	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	5
2-	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	5
1-	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	5

SW Smarthouse




Some traits

- The longitudinal trend has been divided into 9 intervals, in each of which the growth dynamics are similar.
- Using these intervals, we identify 9 single-DAP sPSA traits and 8 interval-mean traits for each of sPSA AGR and sWUR.
 - > These traits have a single value for each plant.
- Conducted LMM analyses that choose the best-fitting of the four spatial models (i) corr, (ii) TPNCSS, (iii) TPPSC2, and (iv) TPPSL1.

Fit and compare several spatial models

Optimal thetas: 0, 50.60790647526 with criterion 5067.536

elapsed time for bobyqa: 108.11 seconds

Optimal thetas: 72.2566046758365, 45.9425888740954 with criterion 5057.485

Choose the best fitting spatial model

> spatial.fit\$spatial.IC

	fixedDF va	rDF	AIC	BIC	loglik						
nonspatial	215	8 5068.	155	6183.432	-2311.077						
corr	215	8 5059.	908	6175.186	-2306.954						
TPNCSS	219	9 5044.	491	6184.775	-2294.245						
TPPSC2	221	9 5047.	000	6197.286	-2293.500						
TPPSL1	215	8 5048.	682	6163.960	-2301.341						
> R2.adj =	R2adj (spa	tial.fit\$	asrt	S\$TPNCSS	βasreml.obj,		R2adj is an				
+ include.which.fixed = ~ OzBarlevID,											
+	ort		implementation of								
+	inc	lude.whic	h.ra	$andom = \sim$.)		Piepho's (2023)				
> R2.adj							adjusted R ² for				
[1] 27.732	43						LMMs.				
attr(,"fix	ed")										
~Smarthous	~Smarthouse + at(Smarthouse, "SW"):cLane + cLane:at(Smarthouse,										
"SE") + at(Smarthouse, "SW"):cPosn + at(Smarthouse, "SE"):cPosn											
<pre><environme:< pre=""></environme:<></pre>	nt: 0x00000	23935bde7	38>								
attr(,"ran	dom")										
~.											

The fixed and random terms

Wald tests for fixed effects.

	Df	denDF	F.inc	Pr							
(Intercept)	1	34.0	23910.0	0.0000	N				ti a l		
Smarthouse	1	34.1	296.1	0.0000			ly large-sca	100 C			
OzBarleyID	213	743.5	5.1	0.0000			(from $\mathbf{Z}_{d}\mathbf{u}_{d}$)	remain	ning	in	
at(Smarthouse,	'SW'):cLane 1	25.0	0.2	0.6298	/	the mo	del.				
at(Smarthouse,	'SE'):cLane 1	21.0	2.7	0.1170		o The	e rest have go	one to ze	ero.		
at(Smarthouse,	'SW'):cPosn 1	30.9	4.8	0.0366			ese two repres				
at(Smarthouse,	'SE'):cPosn 1	27.3	16.2	0.0004		vari	ability within	a Smart	hous	se.	
<pre>> summary(spatial.fit\$asrts\$TPNCSS\$asreml.obj)\$varcomp</pre>											
				component	st	d.error	z.ratio	bound	% ch		
at(Smarthouse,	'SE'):spl(cLane) :cPosr	1 J	001316567	0.00	3430729	0.3837573	P	0		
at(Smarthouse,	'SW'):spl(cPosn)		0.080853911	0.17	0515697	0.4741728	Р	0		
at(Smarthouse,	'SE'):spl(cPosn)	(0.303036161	0.39	7697847	0.7619759	Р	0		
at(Smarthouse,	'SE'):dev(cLane)		L.860556900	1.05	3875627	1.7654426	P	0		
at(Smarthouse,	'SW'):BCol:SBlo	ck:BRov	v (0.259251881	0.65	4683312	0.3959959	Р	0		
at(Smarthouse,	'SE'):BCol:SBlo	ck:BRov	v 1	L.135385995	1.03	5700006	1.0962499	Р	0		
at(Smarthouse,	'SE'):spl(cPosn):spl(c	Lane) (0.286450480	0.33	8224956	0.8469230	Р	0	•	
Smarthouse_SE!F	Ł		30	0.525386920	2.22	8570202	13.6972965	Р	0	_	
Smarthouse_SW!R	Ł		25	5.092817128	2.03	9614855	12.3027233	P	0	19	

	Fixed L	ines	Random Lines						
Trait	AIC change	Fitted model	R ² adj. (%)	Trait	AIC change	Fitted model	R ² adj. (%)		
sPSA.15	-23.7	TPNCSS	27.7	sPSA.15	-13.8	TPPSC2	27.2		
sPSA.27	-48.0	TPPSC2	27.2	sPSA.27	-38.5	TPNCSS	28.1		
sPSA.42	-92.9	TPPSC2	37.1	sPSA.42	-67.9	TPPSC2	37.9		
sPSA.60	-102.1	TPPSC2	30.0	sPSA.60	-81.9	TPPSC2	29.6		
sPSA.72	-72.7	TPPSC2	15.0	sPSA.72	-58.8	TPPSC2	17.4		
sPSA.79	-57.3	TPPSC2	16.0	sPSA.79	-41.7	TPPSC2	16.5		
sPSA.91	-32.4	TPPSC2	8.7	sPSA.91	-12.7	AR1	7.5		
sPSA.103	-26.4	TPPSC2	5.7	sPSA.103	-11.0	TPPSC2	5.9		
sPSA.115	-29.5	TPPSL1	9.7	sPSA.115	-21.3	TPPSC2	10.7		
sPSA.AGR.15to27	-62.4	TPPSC2	29.0	sPSA.AGR.15to27	-47.5	TPPSC2	30.0		
sPSA.AGR.27to42	-103.9	TPPSC2	38.3	sPSA.AGR.27to42	-76.6	TPPSC2	39.1		
sPSA.AGR.42to60	-54.2	TPPSC2	17.5	sPSA.AGR.42to60	-44.6	TPPSC2	17.5		
sPSA.AGR.60to72	-45.0	TPPSC2	24.3	sPSA.AGR.60to72	-33.4	TPPSC2	23.8		
sPSA.AGR.72to79	-12.1	TPNCSS	20.3	sPSA.AGR.72to79	-3.7	TPNCSS	20.3		
sPSA.AGR.79to91	-13.7	TPPSC2	7.3	sPSA.AGR.79to91	-6.8	TPPSC2	5.5		
sPSA.AGR.91to103	-76.8	TPPSC2	<mark>36.2</mark>	sPSA.AGR.91to103	-51.6	TPPSC2	<mark>17.3</mark>		
sPSA.AGR.103to115	-21.3	TPPSC2	19.5	sPSA.AGR.103to115	-12.6	TPPSC2	21.9		
sWUR.15to27	-153.1	TPPSC2	92.5	sWUR.15to27	-126.3	TPPSC2	92.1		
sWUR.27to42	-95.0	TPPSC2	42.4	sWUR.27to42	-63.1	TPPSC2	41.6		
sWUR.42to60	-120.9	TPPSC2	49.5	sWUR.42to60	-86.3	TPPSC2	49.4		
sWUR.60to72	-210.3	TPPSC2	74.9	sWUR.60to72	-159.6	TPPSC2	75.3		
sWUR.72to79	-305.6	TPPSC2	82.5	sWUR.72to79	-241.3	TPPSC2	84.4		
sWUR.79to91	-258.9	TPPSC2	80.8	sWUR.79to91	-215.5	TPPSC2	83.0		
sWUR.91to103	-189.5	TPPSC2	72.3	sWUR.91to103	-147.5	TPPSC2	72.7		
sWUR.103to115	-124.0	TPPSC2	70.2	sWUR.103to115	-96.2	TPPSC2	69.6		

4. Summary

R package **asremlPlus** in conjunction with **ASReml-R**:

- robustly fits a wide range of variance models for local spatial variation;
- Fits tensor-product natural cubic smoothing splines (TPNCSS);
- Fits tensor-product P-splines (TPPS) that can vary in their degree and the order of the differencing for the penalty, as well as incorporating the Piepho et al. (2022) modifications.
- Separate models for sections whose two-dimensional grids can differ.
- Local spatial variation at other than the unit level can be fitted.
- Can use AIC or BIC with reml or full likelihood in choosing models.
- Checks for, and can exclude, unconverged models or models with fixed correlations and removes bound terms, if possible.
- Available on CRAN or my R repository (<u>http://chris.brien.name/rpackages</u>).
- Compatible with ASRem1-R version 4.2.

References

- Brien, C. J. (2024) asremlPlus: augments ASRemI-R in fitting mixed models and packages generally in exploring predictions. R package version 4.4.29. <u>http://chris.brien.name/rpackages</u> or <u>http://cran.at.r-project.org/package=asremlPlus</u>.
- Brien, C. J. (2024). dae: functions useful in the design and ANOVA of experiments. R package version 3.2.21. <u>http://chris.brien.name/rpackages or https://cran.at.r-project.org/package=dae/</u>
- Butler, D. G. (2021). odw: Generate optimal experimental designs (Version 2.1.2): . https://mmade.org/
- Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., & Thompson, R. (2023). ASReml-R reference manual. (Version 4.2). Hemel Hempstead: VSN International Ltd. URL <u>http://asreml.org</u>
- Gilmour, A. R., Cullis, B. R., & Verbyla, A. P. (1997). Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments. *Journal of Agricultural, Biological, and Environmental Statistics, 2*(3), 269-293.
- Piepho, H.-P. (2023). An adjusted coefficient of determination (R2) for generalized linear mixed models in one go. *Biometrical Journal*, 65(7), 2200290. <u>https://doi.org/10.1002/bimj.202200290</u>
- Piepho, H.-P., Boer, M. P., & Williams, E. R. (2022). Two-dimensional P-spline smoothing for spatial analysis of plant breeding trials. Biometrical Journal, 64(5), 835-857.
- Verbyla, A. P. (2019). A note on model selection using information criteria for general linear models estimated using REML. Australian & New Zealand Journal of Statistics, 61(1), 39—50.
- Verbyla, A. P., De Faveri, J., Wilkie, J. D., & Lewis, T. (2018). Tensor Cubic Smoothing Splines in Designed Experiments Requiring Residual Modelling. *Journal of Agricultural, Biological and Environmental Statistics, 23*(4), 478-508.
- Welham, S. J. (2022) TPSbits: creates structures to enable fitting and examination of 2D tensor-product splines using ASRemI-R.
 Version 1.0.0 https://mmade.org/tpsbits/

Thank you for your attention!