Single-step genomic selection: accommodating several key issues

Aidan McGarty¹ Brian Cullis¹, Ahsan Asif² and Kristy Hobson² September 2, 2024

Mixed Models and Experiment Design Lab $(MMaED)^1$ National Institute for Applied Statistics Research Australia University of Wollongong amcgarty@uow.edu.au

Chickpea Breeding Australia² NSW Department of Primary Industries | Agriculture

Overview

• Genomic selection

- Genomic selection
- Motivating Example

- Genomic selection
- Motivating Example
- Complexities

• Plant breeding programs aim to develop superior varieties for commercial release

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material
- Genomic selection (GS) is a cost and time saving application of statistical and genetic theory whereby selections can be made for a set of lines without evaluation experiments

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material
- Genomic selection (GS) is a cost and time saving application of statistical and genetic theory whereby selections can be made for a set of lines without evaluation experiments
- Statistical principle:

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material
- Genomic selection (GS) is a cost and time saving application of statistical and genetic theory whereby selections can be made for a set of lines without evaluation experiments
- Statistical principle:
	- Genes affecting a relevant trait have an association to a set of known genetic covariates (markers)

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material
- Genomic selection (GS) is a cost and time saving application of statistical and genetic theory whereby selections can be made for a set of lines without evaluation experiments
- Statistical principle:
	- Genes affecting a relevant trait have an association to a set of known genetic covariates (markers)
	- These associations are then exploited to determine an individuals expression of this trait given the covariate values are known for an individual

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material
- Genomic selection (GS) is a cost and time saving application of statistical and genetic theory whereby selections can be made for a set of lines without evaluation experiments
- Statistical principle:
	- Genes affecting a relevant trait have an association to a set of known genetic covariates (markers)
	- These associations are then exploited to determine an individuals expression of this trait given the covariate values are known for an individual
- In practice:

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material
- Genomic selection (GS) is a cost and time saving application of statistical and genetic theory whereby selections can be made for a set of lines without evaluation experiments
- Statistical principle:
	- Genes affecting a relevant trait have an association to a set of known genetic covariates (markers)
	- These associations are then exploited to determine an individuals expression of this trait given the covariate values are known for an individual
- In practice:
	- A training dataset is used to estimate the relationship between the relevant trait and the known genetic covariates

- Plant breeding programs aim to develop superior varieties for commercial release
- This requires extensive evaluation experiments to identify superior material
- Genomic selection (GS) is a cost and time saving application of statistical and genetic theory whereby selections can be made for a set of lines without evaluation experiments
- Statistical principle:
	- Genes affecting a relevant trait have an association to a set of known genetic covariates (markers)
	- These associations are then exploited to determine an individuals expression of this trait given the covariate values are known for an individual
- In practice:
	- A training dataset is used to estimate the relationship between the relevant trait and the known genetic covariates
	- These estimated relationships are then used to predict the performance of a set of MMaED | 20W test individuals

• We choose a single step factor analytic linear mixed model (FALMM) [\(Smith](#page-79-0) [et al. \[2024\]](#page-79-0)) as the calibration model:

• We choose a single step factor analytic linear mixed model (FALMM) [\(Smith](#page-79-0) [et al. \[2024\]](#page-79-0)) as the calibration model:

$$
\mathbf{y} = \mathbf{X}\boldsymbol{\tau} + \mathbf{Z}_g \mathbf{u}_g + \mathbf{Z}_p \mathbf{u}_p + \mathbf{e}
$$

• We choose a single step factor analytic linear mixed model (FALMM) [\(Smith](#page-79-0) [et al. \[2024\]](#page-79-0)) as the calibration model:

$$
\mathbf{y} = \mathbf{X}\boldsymbol{\tau} + \mathbf{Z}_g \mathbf{u}_g + \mathbf{Z}_p \mathbf{u}_p + \mathbf{e}
$$

• The key component of this model for the purpose of this talk are the variety effects nested within environments (VE effects) (u_g) which are partitioned into an additive and non-additive genetic component; $u_g = u_a + u_e$

• We choose a single step factor analytic linear mixed model (FALMM) [\(Smith](#page-79-0) [et al. \[2024\]](#page-79-0)) as the calibration model:

$$
\mathbf{y} = \mathbf{X}\boldsymbol{\tau} + \mathbf{Z}_g \mathbf{u}_g + \mathbf{Z}_p \mathbf{u}_p + \mathbf{e}
$$

- The key component of this model for the purpose of this talk are the variety effects nested within environments (VE effects) (u_g) which are partitioned into an additive and non-additive genetic component; $u_g = u_a + u_e$
- We model both \mathbf{u}_a and \mathbf{u}_e with factor analytic structures, where the covariance of these variety effects between environments is modelled by k_a and k_e unknown factors, respectively

• We choose a single step factor analytic linear mixed model (FALMM) [\(Smith](#page-79-0) [et al. \[2024\]](#page-79-0)) as the calibration model:

$$
\mathbf{y} = \mathbf{X}\boldsymbol{\tau} + \mathbf{Z}_g \mathbf{u}_g + \mathbf{Z}_p \mathbf{u}_p + \mathbf{e}
$$

- The key component of this model for the purpose of this talk are the variety effects nested within environments (VE effects) (u_g) which are partitioned into an additive and non-additive genetic component; $u_g = u_a + u_e$
- We model both \mathbf{u}_a and \mathbf{u}_e with factor analytic structures, where the covariance of these variety effects between environments is modelled by k_a and k_e unknown factors, respectively
- For the additive VE effects \mathbf{u}_a , covariance between varieties is also modelled via a known relationship matrix denoted G

• This relationship matrix **G** may be formed via ancestral records, marker information or a combination of both (more on this later)

- This relationship matrix **G** may be formed via ancestral records, marker information or a combination of both (more on this later)
- The matrix formed via marker scores (genetic covariates) is known as the genomic relationship matrix (GRM), often denoted $K = MM^T$ where M is the matrix of centered and scaled marker scores [\(VanRaden \[2008\]](#page-80-0))

- This relationship matrix **G** may be formed via ancestral records, marker information or a combination of both (more on this later)
- The matrix formed via marker scores (genetic covariates) is known as the genomic relationship matrix (GRM), often denoted $K = MM^T$ where M is the matrix of centered and scaled marker scores [\(VanRaden \[2008\]](#page-80-0))
- The matrix formed via ancestral records is denoted \bf{A} and known as the numerator relationship matrix (NRM) [\(Oakey et al. \[2007\]](#page-79-1))

• This factor analytic structure for the additive component \mathbf{u}_a is of the form:

• This factor analytic structure for the additive component \mathbf{u}_a is of the form:

 $u_a = (\Lambda_a \otimes I_v) f_a + \delta_a$

• This factor analytic structure for the additive component \mathbf{u}_a is of the form:

 $u_a = (\Lambda_a \otimes I_v) f_a + \delta_a$

• Where $\bm{\Lambda}_a=\left[\lambda_{a_1},\ldots,\lambda_{a_{k_a}}\right]$ is the $(\rho\times k_a)$ matrix of loadings with λ_{a_i} the p -vector of loadings for the *i*th factor (note p is the number of environments).

 \bullet This factor analytic structure for the additive component \mathbf{u} , is of the form:

 $u_a = (\Lambda_a \otimes I_v) f_a + \delta_a$

- Where $\bm{\Lambda}_a=\left[\lambda_{a_1},\ldots,\lambda_{a_{k_a}}\right]$ is the $(\rho\times k_a)$ matrix of loadings with λ_{a_i} the p-vector of loadings for the *i*th factor (note p is the number of environments).
- I_v is an identity matrix of dimension $(v \times v)$, v being the number of varieties and f_a and δ_a are the vk_a-vector of variety scores and vp-vector of lack-of-fit effects respectively with the following joint distribution:

• This factor analytic structure for the additive component \mathbf{u}_a is of the form:

 $u_a = (\Lambda_a \otimes I_v) f_a + \delta_a$

- Where $\bm{\Lambda}_a=\left[\lambda_{a_1},\ldots,\lambda_{a_{k_a}}\right]$ is the $(\rho\times k_a)$ matrix of loadings with λ_{a_i} the p -vector of loadings for the *i*th factor (note p is the number of environments).
- I_v is an identity matrix of dimension $(v \times v)$, v being the number of varieties and f_a and δ_a are the vk_a-vector of variety scores and vp-vector of lack-of-fit effects respectively with the following joint distribution:

$$
\begin{bmatrix} f_a \\ \delta_a \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} D_a \otimes G & 0 \\ 0 & \psi_a \otimes G \end{bmatrix}\right)
$$

Calibration Model - Covariance between environments

• This factor analytic structure for the additive component \mathbf{u}_a is of the form:

 $u_a = (\Lambda_a \otimes I_v) f_a + \delta_a$

- Where $\bm{\Lambda}_a=\left[\lambda_{a_1},\ldots,\lambda_{a_{k_a}}\right]$ is the $(\rho\times k_a)$ matrix of loadings with λ_{a_i} the p -vector of loadings for the *i*th factor (note p is the number of environments).
- I_v is an identity matrix of dimension $(v \times v)$, v being the number of varieties and f_a and δ_a are the vk_a-vector of variety scores and vp-vector of lack-of-fit effects respectively with the following joint distribution:

$$
\begin{bmatrix} f_a \\ \delta_a \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} D_a \otimes G & 0 \\ 0 & \psi_a \otimes G \end{bmatrix}\right)
$$

• Note Λ _a has been rotated to the principal components solution and as such D _a is a matrix with the eigenvalues of $\mathsf{\Lambda}^*_a$ on the diagonals $(\mathsf{\Lambda}^*_a$ is the unrotated loadings)

Calibration Model - Covariance between environments

• This factor analytic structure for the additive component \mathbf{u}_a is of the form:

 $u_a = (\Lambda_a \otimes I_v) f_a + \delta_a$

- Where $\bm{\Lambda}_a=\left[\lambda_{a_1},\ldots,\lambda_{a_{k_a}}\right]$ is the $(\rho\times k_a)$ matrix of loadings with λ_{a_i} the p -vector of loadings for the *i*th factor (note p is the number of environments).
- I_v is an identity matrix of dimension $(v \times v)$, v being the number of varieties and f_a and δ_a are the vk_a-vector of variety scores and vp-vector of lack-of-fit effects respectively with the following joint distribution:

$$
\begin{bmatrix}f_a\\ \delta_a\end{bmatrix}\sim N\left(\begin{bmatrix}0\\ 0\end{bmatrix},\begin{bmatrix}D_a\otimes G & 0\\ 0 & \psi_a\otimes G\end{bmatrix}\right)
$$

- Note Λ _a has been rotated to the principal components solution and as such D _a is a matrix with the eigenvalues of $\mathsf{\Lambda}^*_a$ on the diagonals $(\mathsf{\Lambda}^*_a$ is the unrotated loadings)
- \bullet ψ _a is a diagonal matrix with the site specific variances ψ _{a;} on the diagonals

• Australian Chickpea disease resistance multi-environment trial (MET)

- Australian Chickpea disease resistance multi-environment trial (MET)
- Including $v = 14629$ varieties in the training data set (i.e both phenotyped and genotyped)

- Australian Chickpea disease resistance multi-environment trial (MET)
- Including $v = 14629$ varieties in the training data set (i.e both phenotyped and genotyped)
- A total of $m = 4303$ retained markers (genetic covariates)

- Australian Chickpea disease resistance multi-environment trial (MET)
- Including $v = 14629$ varieties in the training data set (i.e both phenotyped and genotyped)
- A total of $m = 4303$ retained markers (genetic covariates)
- Across $p = 11$ environments including field, glass house and semi-controlled shade house experiments

- Australian Chickpea disease resistance multi-environment trial (MET)
- Including $v = 14629$ varieties in the training data set (i.e both phenotyped and genotyped)
- A total of $m = 4303$ retained markers (genetic covariates)
- Across $p = 11$ environments including field, glass house and semi-controlled shade house experiments
- Aim is to predict disease resistance among a test set of unphenotyped individuals

- Australian Chickpea disease resistance multi-environment trial (MET)
- Including $v = 14629$ varieties in the training data set (i.e both phenotyped and genotyped)
- A total of $m = 4303$ retained markers (genetic covariates)
- Across $p = 11$ environments including field, glass house and semi-controlled shade house experiments
- Aim is to predict disease resistance among a test set of unphenotyped individuals
- The final model fit included $k_a = 2$ additive and $k_b = 1$ non-additive factors

Motivating example

Complexities

1. Variety by environment interaction (GxE)

- 1. Variety by environment interaction (GxE)
- 2. Complex trial designs:

- 1. Variety by environment interaction (GxE)
- 2. Complex trial designs:
	- Need to accommodate a range of complex trial designs including both field and lab experiments

- 1. Variety by environment interaction (GxE)
- 2. Complex trial designs:
	- Need to accommodate a range of complex trial designs including both field and lab experiments
- 3. Linear dependencies in matrix of marker scores:

- 1. Variety by environment interaction (GxE)
- 2. Complex trial designs:
	- Need to accommodate a range of complex trial designs including both field and lab experiments
- 3. Linear dependencies in matrix of marker scores:
	- Collinear covariates

- 1. Variety by environment interaction (GxE)
- 2. Complex trial designs:
	- Need to accommodate a range of complex trial designs including both field and lab experiments
- 3. Linear dependencies in matrix of marker scores:
	- Collinear covariates
	- More individuals than markers

• Results in a singular and hence non-invertible genomic relationship matrix

- Results in a singular and hence non-invertible genomic relationship matrix
- This inverse is required when solving the mixed model equations (MMEs)

- Results in a singular and hence non-invertible genomic relationship matrix
- This inverse is required when solving the mixed model equations (MMEs)
- Several strategies exist to overcome this complexity however the method we have used is a blending of the K and A relationship matrices

• Combining genomic information with pedigree information has been suggested by several authors [\(Legarra et al. \[2009\]](#page-79-0)[,Vitezica et al. \[2011\]](#page-80-0), [Meyer et al. \[2018\]](#page-79-1))

- Combining genomic information with pedigree information has been suggested by several authors [\(Legarra et al. \[2009\]](#page-79-0)[,Vitezica et al. \[2011\]](#page-80-0), [Meyer et al. \[2018\]](#page-79-1))
- This will always result in an invertible genetic variance matrix even if the GRM **K** is non-invertible as a positive definite matrix (as is guaranteed when forming \mathbf{A}) plus a positive semi definite matrix will be positive definite [\(Harville \[1997\]](#page-79-2))

- Combining genomic information with pedigree information has been suggested by several authors [\(Legarra et al. \[2009\]](#page-79-0)[,Vitezica et al. \[2011\]](#page-80-0), [Meyer et al. \[2018\]](#page-79-1))
- This will always result in an invertible genetic variance matrix even if the GRM **K** is non-invertible as a positive definite matrix (as is guaranteed when forming \mathbf{A}) plus a positive semi definite matrix will be positive definite [\(Harville \[1997\]](#page-79-2))
- We specify G as:

$$
\mathbf{G} = \lambda \mathbf{K} + (1-\lambda)\mathbf{A}
$$

- Combining genomic information with pedigree information has been suggested by several authors [\(Legarra et al. \[2009\]](#page-79-0)[,Vitezica et al. \[2011\]](#page-80-0), [Meyer et al. \[2018\]](#page-79-1))
- This will always result in an invertible genetic variance matrix even if the GRM **K** is non-invertible as a positive definite matrix (as is guaranteed when forming \mathbf{A}) plus a positive semi definite matrix will be positive definite [\(Harville \[1997\]](#page-79-2))
- We specify G as:

$$
\mathbf{G}=\lambda \mathbf{K}+(1-\lambda)\mathbf{A}
$$

• The added parameter λ controls the weighting from the two sources of relatedness, with genomic information dominating when $\lambda \approx 1$ and pedigree information dominating when $\lambda \approx 0$

Choice of λ

• We choose the value of λ which maximises the residual loglikelihood

- We choose the value of λ which maximises the residual loglikelihood
- This is done via maximising the full residual likelihood where λ is simply an extra parameter to estimate

- We choose the value of λ which maximises the residual loglikelihood
- This is done via maximising the full residual likelihood where λ is simply an extra parameter to estimate
- However this can be shown graphically through profiling on the parameter of interest (λ) and assessing the residual log-likelihood under a range of values for this parameter

Choice of λ

• The model described then allows us to form predictions of variety scores for all varieties in the test set, that is, those with genotypic information but without phenotypic information

- The model described then allows us to form predictions of variety scores for all varieties in the test set, that is, those with genotypic information but without phenotypic information
- Considering f_a has the following variance, where f_a is reordered as environments within varieties:

- The model described then allows us to form predictions of variety scores for all varieties in the test set, that is, those with genotypic information but without phenotypic information
- Considering f_a has the following variance, where f_a is reordered as environments within varieties:

$$
\text{var}\begin{bmatrix} \boldsymbol{f}_{a_1} \\ \boldsymbol{f}_{a_2} \end{bmatrix} = \begin{bmatrix} \boldsymbol{G}_{11} & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \otimes \boldsymbol{D}_a
$$

- The model described then allows us to form predictions of variety scores for all varieties in the test set, that is, those with genotypic information but without phenotypic information
- Considering f_a has the following variance, where f_a is reordered as environments within varieties:

$$
\text{var}\begin{bmatrix}f_{a_1}\\ f_{a_2}\end{bmatrix}=\begin{bmatrix}\textbf{G}_{11} & \textbf{G}_{12}\\ \textbf{G}_{21} & \textbf{G}_{22}\end{bmatrix}\otimes \textbf{D}_a
$$

 \bullet Where f_{a_1} and G_{11} correspond to the partition of f and G relating to varieties with phenotypic records (training set) and $\mathbf{f}_{\mathsf{a}_2}$ and \mathbf{G}_{22} corresponds to the partitions relating to varieties without phenotypic records (test set)

Predictions

- The model described then allows us to form predictions of variety scores for all varieties in the test set, that is, those with genotypic information but without phenotypic information
- Considering f_a has the following variance, where f_a is reordered as environments within varieties:

$$
\text{var}\begin{bmatrix}f_{a_1}\\ f_{a_2}\end{bmatrix}=\begin{bmatrix}\textbf{G}_{11} & \textbf{G}_{12}\\ \textbf{G}_{21} & \textbf{G}_{22}\end{bmatrix}\otimes \textbf{D}_a
$$

- \bullet Where f_{a_1} and G_{11} correspond to the partition of f and G relating to varieties with phenotypic records (training set) and $\mathbf{f}_{\mathsf{a}_2}$ and \mathbf{G}_{22} corresponds to the partitions relating to varieties without phenotypic records (test set)
- We then form predicted values for the test set:

Predictions

- The model described then allows us to form predictions of variety scores for all varieties in the test set, that is, those with genotypic information but without phenotypic information
- Considering f_a has the following variance, where f_a is reordered as environments within varieties:

$$
\text{var}\begin{bmatrix}f_{a_1}\\ f_{a_2}\end{bmatrix}=\begin{bmatrix}\textbf{G}_{11} & \textbf{G}_{12}\\ \textbf{G}_{21} & \textbf{G}_{22}\end{bmatrix}\otimes \textbf{D}_a
$$

- \bullet Where f_{a_1} and G_{11} correspond to the partition of f and G relating to varieties with phenotypic records (training set) and $\mathbf{f}_{\mathsf{a}_2}$ and \mathbf{G}_{22} corresponds to the partitions relating to varieties without phenotypic records (test set)
- We then form predicted values for the test set:

$$
\tilde{\boldsymbol{\mathsf f}}_{a_2} = (\boldsymbol{\mathsf G}_{21}\boldsymbol{\mathsf G}_{11}^{-1}\otimes \boldsymbol{\mathsf I}_{k_a})\tilde{\boldsymbol{\mathsf f}}_{a_1}
$$

Conclusion

• Genomic selection is a powerful tool which has the capacity to save significant time and money in plant breeding programs

- Genomic selection is a powerful tool which has the capacity to save significant time and money in plant breeding programs
- However many complexities arise in implementation, a few of which have been explored here, specifically singularities in the GRM (K)

- Genomic selection is a powerful tool which has the capacity to save significant time and money in plant breeding programs
- However many complexities arise in implementation, a few of which have been explored here, specifically singularities in the GRM (K)
- Combining both ancestral and genomic relationship matrices both overcomes this issue

- Genomic selection is a powerful tool which has the capacity to save significant time and money in plant breeding programs
- However many complexities arise in implementation, a few of which have been explored here, specifically singularities in the GRM (K)
- Combining both ancestral and genomic relationship matrices both overcomes this issue
- Finally DWReml (Butler, pers comm) can handle the high computational demand when fitting complex single-step factor models which include genetic relatedness such as the motivating example

- A Asif, A McGarty, B Cullis, and K Hobson. Identification of resistance to aggressive ascochyta rabiei isolates in australian chickpea breeding lines using genomic selection [in prep]. 2024.
- D A Harville. Matrix algebra from a statisticians perspective. Springer-Verlag, New York, 1997.
- A. Legarra, I. Aguilar, and I. Misztal. A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92:4656–4663, 9 2009. ISSN 00220302. doi: 10.3168/jds.2009-2061.
- Karin Meyer, Bruce Tier, and Andrew Swan. Estimates of genetic trend for single step genomic evaluations. Genetics Selection Evolution, 50:39, 12 2018. ISSN 1297-9686. doi: 10.1186/s12711-018-0410-1.
- H Oakey, A P Verbyla, B R Cullis, X Wei, and W S Pitchford. Joint modeling of additive and non-additive (genetic line) effects in multi-environment trials. Theoretical and Applied Genetics, 114, 2007. ISSN 00405752. doi: 10.1007/s00122-007-0515-3.
- A B Smith, A S K Shunmugam, D G Butler, and B R Cullis. Plant variety selection using interaction classes derived from factor analytic linear mixed models: models with information on genetic relatedness. Journal of Agricultural Science [under revision], 2024.

- P M VanRaden. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91:4414-4423, 2008. ISSN 00220302. doi: 10.3168/jds.2007-0980. URL <http://linkinghub.elsevier.com/retrieve/pii/S0022030208709901>.
- Z. G. Vitezica, I. Aguilar, I. Misztal, and A. Legarra. Bias in genomic predictions for populations under selection. Genetics Research, 93:357–366, 10 2011. ISSN 0016-6723. doi: 10.1017/S001667231100022X.

