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Genomic Selection - What is it?

• Plant breeding programs aim to develop superior varieties for commercial release

• This requires extensive evaluation experiments to identify superior material

• Genomic selection (GS) is a cost and time saving application of statistical and

genetic theory whereby selections can be made for a set of lines without

evaluation experiments
• Statistical principle:

• Genes affecting a relevant trait have an association to a set of known genetic

covariates (markers)

• These associations are then exploited to determine an individuals expression of this

trait given the covariate values are known for an individual

• In practice:

• A training dataset is used to estimate the relationship between the relevant trait and

the known genetic covariates

• These estimated relationships are then used to predict the performance of a set of

test individuals
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Calibration Model

• We choose a single step factor analytic linear mixed model (FALMM) (Smith

et al. [2024]) as the calibration model:

y = Xτ + Zgug + Zpup + e

• The key component of this model for the purpose of this talk are the variety

effects nested within environments (VE effects) (ug ) which are partitioned into an

additive and non-additive genetic component; ug = ua + ue

• We model both ua and ue with factor analytic structures, where the covariance of

these variety effects between environments is modelled by ka and ke unknown

factors, respectively

• For the additive VE effects ua, covariance between varieties is also modelled via a

known relationship matrix denoted G
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Calibration Model - Genetic relatedness

• This relationship matrix G may be formed via ancestral records, marker

information or a combination of both (more on this later)

• The matrix formed via marker scores (genetic covariates) is known as the genomic

relationship matrix (GRM), often denoted K = MMT where M is the matrix of

centered and scaled marker scores (VanRaden [2008])

• The matrix formed via ancestral records is denoted A and known as the

numerator relationship matrix (NRM) (Oakey et al. [2007])
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Calibration Model - Covariance between environments

• This factor analytic structure for the additive component ua is of the form:

ua = (Λa ⊗ Iv )fa + δa

• Where Λa =
[
λa1 , . . . ,λaka

]
is the (p × ka) matrix of loadings with λai the

p-vector of loadings for the ith factor (note p is the number of environments).

• Iv is an identity matrix of dimension (v × v), v being the number of varieties and

fa and δa are the vka-vector of variety scores and vp-vector of lack-of-fit effects

respectively with the following joint distribution:[
fa
δa

]
∼ N

([
0

0

]
,

[
Da ⊗ G 0

0 ψa ⊗ G

])
• Note Λa has been rotated to the principal components solution and as such Da is a

matrix with the eigenvalues of Λ∗
a on the diagonals (Λ∗

a is the unrotated loadings)

• ψa is a diagonal matrix with the site specific variances ψai on the diagonals
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Motivating example

• Australian Chickpea disease resistance multi-environment trial (MET)

• Including v = 14629 varieties in the training data set (i.e both phenotyped and

genotyped)

• A total of m = 4303 retained markers (genetic covariates)

• Across p = 11 environments including field, glass house and semi-controlled shade

house experiments

• Aim is to predict disease resistance among a test set of unphenotyped individuals

• The final model fit included ka = 2 additive and ke = 1 non-additive factors
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Complexities

1. Variety by environment interaction (GxE)

2. Complex trial designs:

• Need to accommodate a range of complex trial designs including both field and lab

experiments

3. Linear dependencies in matrix of marker scores:

• Collinear covariates

• More individuals than markers
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Linear dependencies in matrix of marker scores

• Results in a singular and hence non-invertible genomic relationship matrix

• This inverse is required when solving the mixed model equations (MMEs)

• Several strategies exist to overcome this complexity however the method we have

used is a blending of the K and A relationship matrices
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Blended genetic variance matrix

• Combining genomic information with pedigree information has been suggested by

several authors (Legarra et al. [2009],Vitezica et al. [2011], Meyer et al. [2018])

• This will always result in an invertible genetic variance matrix even if the GRM K

is non-invertible as a positive definite matrix (as is guaranteed when forming A)

plus a positive semi definite matrix will be positive definite (Harville [1997])

• We specify G as:

G = λK + (1 − λ)A

• The added parameter λ controls the weighting from the two sources of

relatedness, with genomic information dominating when λ ≈ 1 and pedigree

information dominating when λ ≈ 0
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Predictions

• The model described then allows us to form predictions of variety scores for all

varieties in the test set, that is, those with genotypic information but without

phenotypic information

• Considering fa has the following variance, where fa is reordered as environments

within varieties:

var

[
fa1

fa2

]
=

[
G11 G12

G21 G22

]
⊗ Da

• Where fa1 and G11 correspond to the partition of f and G relating to varieties

with phenotypic records (training set) and fa2 and G22 corresponds to the

partitions relating to varieties without phenotypic records (test set)

• We then form predicted values for the test set:

f̃a2 = (G21G−1
11 ⊗ Ika)f̃a1



Predictions

• The model described then allows us to form predictions of variety scores for all

varieties in the test set, that is, those with genotypic information but without

phenotypic information

• Considering fa has the following variance, where fa is reordered as environments

within varieties:

var

[
fa1

fa2

]
=

[
G11 G12

G21 G22

]
⊗ Da

• Where fa1 and G11 correspond to the partition of f and G relating to varieties

with phenotypic records (training set) and fa2 and G22 corresponds to the

partitions relating to varieties without phenotypic records (test set)

• We then form predicted values for the test set:

f̃a2 = (G21G−1
11 ⊗ Ika)f̃a1



Predictions

• The model described then allows us to form predictions of variety scores for all

varieties in the test set, that is, those with genotypic information but without

phenotypic information

• Considering fa has the following variance, where fa is reordered as environments

within varieties:

var

[
fa1

fa2

]
=

[
G11 G12

G21 G22

]
⊗ Da

• Where fa1 and G11 correspond to the partition of f and G relating to varieties

with phenotypic records (training set) and fa2 and G22 corresponds to the

partitions relating to varieties without phenotypic records (test set)

• We then form predicted values for the test set:

f̃a2 = (G21G−1
11 ⊗ Ika)f̃a1



Predictions

• The model described then allows us to form predictions of variety scores for all

varieties in the test set, that is, those with genotypic information but without

phenotypic information

• Considering fa has the following variance, where fa is reordered as environments

within varieties:

var

[
fa1

fa2

]
=

[
G11 G12

G21 G22

]
⊗ Da

• Where fa1 and G11 correspond to the partition of f and G relating to varieties

with phenotypic records (training set) and fa2 and G22 corresponds to the

partitions relating to varieties without phenotypic records (test set)

• We then form predicted values for the test set:

f̃a2 = (G21G−1
11 ⊗ Ika)f̃a1



Predictions

• The model described then allows us to form predictions of variety scores for all

varieties in the test set, that is, those with genotypic information but without

phenotypic information

• Considering fa has the following variance, where fa is reordered as environments

within varieties:

var

[
fa1

fa2

]
=

[
G11 G12

G21 G22

]
⊗ Da

• Where fa1 and G11 correspond to the partition of f and G relating to varieties

with phenotypic records (training set) and fa2 and G22 corresponds to the

partitions relating to varieties without phenotypic records (test set)

• We then form predicted values for the test set:

f̃a2 = (G21G−1
11 ⊗ Ika)f̃a1



Predictions

• The model described then allows us to form predictions of variety scores for all

varieties in the test set, that is, those with genotypic information but without

phenotypic information

• Considering fa has the following variance, where fa is reordered as environments

within varieties:

var

[
fa1

fa2

]
=

[
G11 G12

G21 G22

]
⊗ Da

• Where fa1 and G11 correspond to the partition of f and G relating to varieties

with phenotypic records (training set) and fa2 and G22 corresponds to the

partitions relating to varieties without phenotypic records (test set)

• We then form predicted values for the test set:

f̃a2 = (G21G−1
11 ⊗ Ika)f̃a1



Predictions

• The model described then allows us to form predictions of variety scores for all

varieties in the test set, that is, those with genotypic information but without

phenotypic information

• Considering fa has the following variance, where fa is reordered as environments

within varieties:

var

[
fa1

fa2

]
=

[
G11 G12

G21 G22

]
⊗ Da

• Where fa1 and G11 correspond to the partition of f and G relating to varieties

with phenotypic records (training set) and fa2 and G22 corresponds to the

partitions relating to varieties without phenotypic records (test set)

• We then form predicted values for the test set:

f̃a2 = (G21G−1
11 ⊗ Ika)f̃a1



Conclusion

• Genomic selection is a powerful tool which has the capacity to save significant

time and money in plant breeding programs

• However many complexities arise in implementation, a few of which have been

explored here, specifically singularities in the GRM (K)

• Combining both ancestral and genomic relationship matrices both overcomes this

issue

• Finally DWReml (Butler, pers comm) can handle the high computational demand

when fitting complex single-step factor models which include genetic relatedness

such as the motivating example
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