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Dealing with complexity in
environmental systems
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Stephens, C. M., Lall, U., Johnson, F. M., & Marshall, L. A. (2020). Landscape
changes and their hydrologic effects: Interactions and feedbacks across
scales. Earth-Science Reviews, 103466.



MACQUARIE
Unlver51ty

AAAAAAAAAAAAAAA

Dealing with complexity in
environmental systems
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Simulating hydrologic processes
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Integrating hydrologic and water quality
variables

) | build-up Jll wash-off
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Build-up / wash-off model (BwMod)

Sikorska, A.E., et al., The value of streamflow data in improving TSS predictions - Bayesian multi-objective calibration. Journal of Hydrology. 530: p. 241-254, 2015.
Wu, X., L. Marshall, A. Sharma, Improving Total Suspended Solids (TSS) predictions with data transformations in the data domain and time domain.




Integrating hydrologic and vegetation
dynamics
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P PET

Model Inputs: P, PET
Model Outputs: Q, LAI

Calibrating Parameters:

Huz: Height of soil moisture tank

B: Distribution function shape

Alp: Quick-slow split

Throughtall | PET LAY | X X oo | Kq: Quickflow routing rate
ObJectlvg, 1 Ks: Slowflow routing rate

WUE: Water use efficiency

Ksg: Natural decay factor for
live/green biomass

Huz

Tang, Marshall, et al. (2017). A Bayesian alternative for multi-objective ecohydrological model
specification. Journal of Hydrology http://dx.doi.org/10.1016/j.jhydrol.2017.07.040
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Increasingly available information
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Deriving daily water levels from satellite altimetry and land
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case study for the Mekong River
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Uncertainty in environmental analysis is
innate

. Qianifi - Model
Slgnlflcgnt effort has been put into Uncertainty Parameter
uncertainty frameworks that attempt to Uncertainty
explicitly address potential model
uncertainties and build trust in models

« Each is aimed at reconciling Uncertain Errors in

obseryatlonsllnformatiop with model model structure calibration data
equations and assumptions

Errors in Observational
inputs Uncertainty
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A Bayesian uncertainty framework

Adapted after Clark,

Ecotogy tetters;2665.
Standard Multiple Hierarchical Ensemble
Bayesian Sources of Model Model

Model Data

y ~ variable of interest
x ~ input data, climatological variables
0 ~ parameters



Model inference and optimisation
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« Parameter and data uncertainty
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Smith, T. J., & Marshall, L. A. Bayesian methods in hydrologic modeling: A study of
recent advancements in Markov chain Monte Carlo techniques. Water Resources
Research, 44(12), 2008.

Jeremiah, Sisson, Sharma, Marshall, Efficient hydrological model parameter
optimization with Sequential Monte Carlo sampling, Environmental Modelling &
Software, Volume 38, 2012.

Step 1:

Assume Gaussian, homoscedastic, independent errors

Step 2:

Check for zero-inflation
(>10% zeros in observed
discharge record)

Step 3:

Check for heteroscedastic
residuals

= 75% zero observations

Add zero-inflation
component to likelihood
function

100 200 300

Add Box-Cox transform
component to likelihood
function

T. Smith, L Marshall, A Sharma, Modeling residual hydrologic errors with
Bayesian inference, Journal of Hydrology, Volume 528, 2015

Wu, X., L. Marshall, A. Sharma, The influence of data transformations in
simulating Total Suspended Solids using Bayesian inference, Environmental
Modelling and Software, 2019.




Using proxy data with measurement error
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Build-up / wash-off model (BwMod)

Wu, X., Marshall, L. and Sharma, A., 2022. Incorporating multiple observational
uncertainties in water quality model calibration. Hydrological Processes, 36(1).

Wu, X., Marshall, L., & Sharma, A. (2022). Quantifying input uncertainty in the
calibration of water quality models: reordering errors via the secant
method. Hydrology and Earth System Sciences, 26(5), 1203-1221.

10830(T5S) = 1.0063l0g 5[ Turbidity) + 0.1435
Variance (residuals) = 0.0195
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Using proxy data with measurement error
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Wu, X., Marshall, L., & Sharma, A. (2022). Quantifying input uncertainty in
the calibration of water quality models: reordering errors via the secant
method. Hydrology and Earth System Sciences, 26(5), 1203-1221.



Using multivariate data with measurement error B
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China Camp

Define a new error model using MODIS satellite products:
(1) FparLai_QC expressing pixel quality information

(2) LaiStdDev_1km representing retrieval uncertainty (STD LAl)

LAL, = LAl + v, = LAT, + & + v, = LAI, + A,
AtNN(O, O-EAIt + 0-1\2/1)

2

Tang, Marshall, et al. (2019). Ecohydrologic error models for improved Bayesian inference
in remotely sensed catchments. Water Resources Research.
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(a) Good data (no error) (b) Poor data (no error)

* Intervals when simulating

1 * ‘ ’
Reliability: 96.48%; Sharpness: 3.3322 Reliability: 79.43%; Sharpness: 3.3305 gOOd data become
0 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
Time Step (days) Time Step (days) narrower

(c) Good data (with error)

, | (4 Poor data (with error) | , » Uncertainty estimates for
‘poor’ data are improved

* |ssues with model
structural errors remain

LAI

Reliability: 93.83%; Sharpness: 2.8817

0 o Reliability: 90.07%; Sharpness: 4.5027
50 100 150 200 250 300 350 50 100 150 200 250 300 350
Time Step (days) Time Step (days)

Figure: 90% Confidence limit of the total (dark blue) and residual (light blue) errors between measured and predicted LAl values for good/poor data for China Camp. In each plot,
the red dots are the LAl observations and the black line is the predictions. The computed statistics (reliability and sharpness) is shown at the bottom.

Tang, Marshall, et al. (2019). Ecohydrologic error models for improved Bayesian inference in remotely sensed catchments. Water Resources Research.
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Bayesian inference and environmental
models

« Bayesian inference is an attractive framework for quantifying
uncertainty in process-based models, allowing for complex
descriptions of model error;

* Favoured in the environmental modelling community because:

v" Allows for expert knowledge
v' Expands the use of process based models
v' Based on the modeler’s domain knowledge



Rise of Machine Learning +
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* Unprecedented success of ML in certain disciplines has increased its momentum in fields like water
resources

Two Grand Challenges in ML for

oiabis S5 ralicic O S e
st 2lep sty Do e Environmental Analysis:

» Lack of explainability

» Divorce from the system knowledge-base

Shen, C. (2018), Deep learning: A
next-generation big-data
approach for hydrology, Eos,

99, https://doi.org/10.1029/2018E
0095649. Published on 25 April

2018.


https://doi.org/10.1029/2018EO095649
https://doi.org/10.1029/2018EO095649

Building trustworthy
environmental

« Shifting from a ‘borrowing’ to a ‘co-creation’ culture

IE

* Knowledge-driven regularization of ML

« Data-driven discovery of knowledge

« Fidelity to knowledge base yet more
agnostic to existing parameterizations

« Tackling coupled human-natural
systems to support policy making

* Leveraging commercial potential

m O d e I s Process-based Modelling

* Based on causal relationship, presumptive or real

« Strong in system identification & hypothesis testing
o Inefficient in incorporating big data

 Logical and intuitive

Approaches to hybridization:

» Coupled models
» ML-informed process-based
models

Physics-informed ML
models

« Augmenting human
cognitive capacity

« Improved predictive power

* Higher computational efficiency

« Ad hoc interfacing/integration strategies

 Limited scientific learning via interrogating
ML-driven relationships or classification
schemes

Machine Learning

Modelling Purpose?

« Nowcasting and prediction,
« Scenario analysis, or

« Diagnostic learning

Razavi, S., Hannah, D.M., Elshorbagy, A., Kumar, S., Marshall, L., Solomatine,
D.P., Dezfuli, A., Sadegh, M. and Famiglietti, J., (2022). Coevolution of Machine
Learning and Process-based Modelling to Revolutionize Earth and Environmental
Sciences: A Perspective. Hydrological Processes, p.e14596.

« Based on correlational relationships
« Strong in complex high dimensional mapping
 Easy scaling to any big data

« Limited interpretability and explainability
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Coupled Models

* An underlying process model is used to simulate water fluxes
and operational scenarios.

A ML model (a Long Short-Term Memory (LSTM) network ) is
applied to the model errors to improve probabilistic predictions.

* Overall goal is to couple a deep learning approach with a
hydrological model to characterize predictive uncertainty and

A 4 "
system processes together.

Lfg:y';i.ogica.mﬁm SR ; Li, D., Marshall, L., Liang, Z., Sharma, A., & Zhou, Y. (2021). Characterizing
® Meteorologicalstaion. S g distributed hydrological model residual errors using a probabilistic long short-
term memory network. Journal of Hydrology, 603, 126888.
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Hybridization

Forcing Data
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Box-Cox Transformation
for the observed and simulated
streamflow

. 2

Training LSTM Networks
with gradient descent

X, Structure of a LSTM's Hidden Unit

L 2

| Bayesian Inference l

[

I Probabilistic Streamflow l
Prediction

of ML and Process Models

Streamflow (msls)
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Li, D., Marshall, L., Liang, Z., Sharma, A., & Zhou, Y. (2021). Characterizing
distributed hydrological model residual errors using a probabilistic long short-
term memory network. Journal of Hydrology, 603, 126888.
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Kapoor, A., Pathiraja, S., Marshall, L. and Chandra, R., 2023. DeepGR4J:
A deep learning hybridization approach for conceptual rainfall-runoff
modelling. Environmental Modelling & Software, 169, p.105831.
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T Hybridized Conceptual
il Models
« A component of a process
oA A T model is replaced by a ML
(a) GR4J (b) LSTM (c) CNN model to improve prediCtionS
%5}4 « Overall goal is to provide
iy more flexibility to

| components of the model
that aren’t well defined by
existing knowledge

NNSE (T
NNSE (Test)

.4 0.6 0.4 0.6
NNSE (Train) NNSE (Train)

(d) DeepGR4J-LSTM-Q;, (e) DeepGR4J-CNN-Q;

Kapoor, A., Pathiraja, S., Marshall, L. and Chandra, R., 2023. DeepGR4J:
A deep learning hybridization approach for conceptual rainfall-runoff
modelling. Environmental Modelling & Software, 169, p.105831.



Hybridization of ML and Process Models
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LR model
400mx400m

HR model
Floodplain:
40mx40m
Streams:
40mx40m

Physics Informed ML

* Alow resolution hydrodynamic model is used as an input to a
high-resolution Deep Learning model.

« Overall goal is to provide physically-derived information to guide
and constrain predictions from the ML approach
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What is the path forward?
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 ltis clear that Al/Machine Learning provides a powerful tool for environmental
analysis

« How can we build trustworthy models that capitalise on the ideals of both
mechanistic and machine learning methods?

* Requires strong collaboration and co-design between data scientists and
domain researchers

ARC Training Centrein
Data Analytics for Resources & Environments




Data Analytics in Resources and Environments
(DARE)
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A multidisciplinary ARC Training Centre that trains a new generation of world-leading data scientists
with applied domain knowledge

Students are embedded with industry and government partners to improve informed decision making
around Australian resources

We develop novel Data Science
in the domains of

Water, Minerals & Biodiversity

to drive integrated decisions in the management of
Australia’s natural resources.
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